
The API Gateway Handbook

 1

The API Gateway Handbook

 2

The API Handbook

by Thomas Bayer
bayer@predic8.de
https://www.linkedin.com/in/thomasub/

and Tobias Polley
polley@predic8.de
https://www.linkedin.com/in/tobias-polley/

Release 2025/09/28

Copyright © 2025 predic8 GmbH

Published by predic8 GmbH, Koblenzer Strasse 65, 53173 Bonn, Germany

License

You may copy and share this work freely, as long as it is not modified or sold.

Disclaimer

While the author and publisher have made every effort to ensure the accuracy and
completeness of the content, no responsibility is assumed for errors, inaccuracies, omissions,
or any inconsistencies herein.

The examples, tools, and techniques discussed are illustrative in nature. Readers are advised
to adapt and validate any solutions provided according to their specific requirements,
technology stack, and organizational practices.

The author and publisher shall not be held liable for any damages, including but not limited to
direct, indirect, incidental, or consequential damages arising from the use or reliance on the
content of this book.

Any references to specific products, tools, or brands are for illustrative purposes only and do
not imply endorsement or recommendation by the author or publisher.

The API Gateway Handbook

 3

Table of Contents

Preface

0 PREFACE ... 8
0.1 ABOUT THIS BOOK ... 8
0.2 WHY YOU SHOULD READ THIS BOOK? ... 9
0.3 HOW TO READ THIS BOOK ... 9
0.4 WHY WE WROTE THIS BOOK ... 10
0.5 HOW WE WROTE THIS BOOK ... 10
0.6 HOW YOU CAN HELP US .. 10
0.7 ABOUT US ... 11

Part I

1 FOUNDATION .. 14
1.1 APPLICATION PROGRAMMING INTERFACE (API) .. 14
1.2 HYPERTEXT TRANSFER PROTOCOL (HTTP) .. 15
1.3 HTTP CLIENTS ... 17
1.4 REVERSE PROXIES ... 23

2 API GATEWAYS .. 25
2.1 RESPONSIBILITIES OF API GATEWAYS .. 25
2.2 KINDS OF API GATEWAYS ... 26
2.3 OPEN SOURCE API GATEWAYS ... 31

3 HOW API GATEWAYS WORK ... 32
3.1 PLUGINS AND POLICIES .. 33
3.2 MESSAGE FLOW ... 34
3.3 EXPRESSION LANGUAGES ... 39
3.4 CUSTOM PLUGINS ... 43

4 DEPLOYMENT .. 44
4.1 GATEWAY COMPONENTS .. 44
4.2 GATEWAY POSITIONING .. 46
4.3 CLUSTERING GATEWAYS ... 56
4.4 CHAINING GATEWAYS .. 58

5 INSTALLATION ... 62
5.1 CONTAINERIZED GATEWAYS .. 62
5.2 APIOPS .. 63

6 OPENAPI ... 65
6.1 OPENAPI-BASED CONFIGURATION .. 65
6.2 OPENAPI URL REWRITING .. 69
6.3 MESSAGE VALIDATION WITH OPENAPI ... 71

7 API ORCHESTRATION ... 73

The API Gateway Handbook

 4

8 SECURITY .. 75
8.1 INTEGRITY ... 75
8.2 CONFIDENTIALITY ... 75
8.3 AUTHENTICATION & AUTHORIZATION ... 76

9 TRANSPORT LAYER SECURITY (TLS/SSL) ... 78
9.1 THE MAN IN THE MIDDLE ... 78
9.2 SSL AND TLS ... 78
9.3 API GATEWAYS AND TLS CONNECTIONS .. 79

10 CONTENT PROTECTION .. 80
10.1 JSON ATTACKS .. 81
10.2 XML ATTACKS .. 82
10.3 GRAPHQL EXPLOITS .. 83
10.4 CONTENT PROTECTION ... 85
10.5 CONTENT TYPE CONFUSION .. 86

11 INJECTION ATTACKS ... 88
11.1 INJECTION ATTACKS ON APIS ... 88
11.2 INPUT VALIDATION WITH OPENAPI .. 88
11.3 WHY VALIDATION ALONE ISN’T ENOUGH .. 89
11.4 EFFECTIVE INJECTION PROTECTION .. 90
11.5 API GATEWAY VS. WEB APPLICATION FIREWALL (WAF) .. 91

12 MESSAGE VALIDATION ... 92
12.1 RESPONSE VALIDATION .. 92
12.2 DESCRIBING ERROR MESSAGES .. 96
12.3 JSON VALIDATION .. 100
12.4 XML VALIDATION .. 101
12.5 OPENAPI VALIDATION .. 101

13 API KEYS .. 102
13.1 WHAT ARE API KEYS? .. 102

14 TOKENS AND API SECURITY .. 105
14.1 WHAT IS A TOKEN .. 105
14.2 HOW (BEARER) TOKENS WORK ... 107
14.3 TYPES OF TOKENS .. 109

15 JSON WEB TOKENS .. 113
15.1 WHAT IS A JSON WEB TOKEN? ... 113
15.2 DECODING JWTS .. 114
15.3 HOW TO PROTECT AN API WITH JWT .. 117

16 OAUTH2 AND OPENID CONNECT .. 120
16.1 OAUTH2 ... 120
16.2 SECURING APIS WITH OAUTH2 .. 121
16.3 OPENID CONNECT .. 123
16.4 IN PRACTICE .. 124
16.5 REASONS TO USE OAUTH2 AND OPENID CONNECT ... 126
16.6 SETTING UP A JWT VERIFIER WITH OIDC ... 126
16.7 WHAT IS JWKS? ... 130

The API Gateway Handbook

 5

16.8 VERIFICATION OF JWT SIGNATURE AND CLAIMS .. 130

17 RATE LIMITING ... 132

18 DATA MASKING .. 138

19 SECURITY FOR LEGACY PROTOCOLS (SOAP) ... 139
19.1 WSDL VALIDATION ... 139

20 CROSS ORIGIN RESOURCE SHARING (CORS) .. 140
20.1 CROSS-SITE REQUEST FORGERY (CSRF) ATTACKS .. 140
20.2 HOW THE SAME-ORIGIN POLICY PROHIBITS API CALLS? .. 142
20.3 HOW DOES CORS WORK? .. 143
20.4 PREFLIGHT (OPTIONS) REQUESTS .. 143
20.5 PREVENTING CORS PROBLEMS USING A GATEWAY ... 145

21 API LOAD BALANCING .. 148
21.1 WHAT IS AN API LOAD BALANCER? .. 148
21.2 LOAD BALANCING ALGORITHMS .. 148
21.3 DYNAMIC BALANCERS .. 153
21.4 HEALTH MONITORING .. 154
21.5 AVAILABILITY AND FAILOVER .. 155
21.6 SINGLE POINT OF FAILURE ... 160

22 PERFORMANCE .. 163
22.1 LATENCY ... 163
22.2 BANDWIDTH (THROUGHPUT) .. 164
22.3 PERFORMANCE TUNING .. 165

The API Gateway Handbook

 6

Part II

23 MEMBRANE API GATEWAY .. 167
23.1 INSTALLATION AND FIRST STEPS .. 167

24 API CONFIGURATION ... 172
24.1 CONFIGURATION ERRORS ... 174

25 ROUTING TRAFFIC .. 175
25.1 SEQUENCE OF API MATCHING .. 176
25.2 ROUTING CRITERIA .. 178
25.3 URI TEMPLATES .. 179
25.4 NAMING APIS .. 180

26 MESSAGE AND EXCHANGE OBJECTS ... 182
26.1 MESSAGE PROPERTIES ... 183
26.2 SHORT CIRCUIT RESPONSES .. 186

27 OPENAPI .. 188
27.1 GATEWAY CONFIGURATION USING OPENAPI ... 188
27.2 CONFIGURING OPENAPI REWRITING ... 190
27.3 OPENAPI MESSAGE VALIDATION .. 192
27.4 APIOPS WITH OPENAPI ... 194
27.5 BEST PRACTICES FOR MEMBRANE OPENAPI DEPLOYMENTS .. 197

28 TRANSFORMATION AND MESSAGE MANIPULATION ... 200
28.1 MANIPULATING HTTP HEADERS ... 200
28.2 PASSING HTTP HEADERS TO A BACKEND .. 201
28.3 COMPUTING HEADER OR PROPERTY VALUES .. 202
28.4 REMOVING HTTP HEADERS ... 203
28.5 BODY TRANSFORMATION ... 204
28.6 FORMAT TRANSFORMATION ... 204
28.7 MAKE IT NICE ... 205
28.8 TEMPLATES .. 206

29 CONTROL FLOW ... 209
29.1 CONDITIONS .. 209

30 API ORCHESTRATION ... 211
30.1 AGGREGATING BACKEND APIS ... 211
30.2 AUTHENTICATION FOR BACKEND API ... 214
30.3 PROCESSING RESTFUL LIST RESOURCES .. 217

31 SECURE DATA IN TRANSIT WITH TLS ... 222
31.1 REACHING BACKENDS OVER TLS .. 222
31.2 TERMINATION OF TLS CONNECTIONS ... 223
31.3 DEBUGGING TLS CONNECTIVITY ... 227

32 ACCESS CONTROL LISTS .. 229

33 CONTENT PROTECTION .. 230

The API Gateway Handbook

 7

33.1 JSON PROTECTION ... 230
33.2 XML PROTECTION ... 232
33.3 GRAPHQL PROTECTION .. 233

34 BASIC AUTHENTICATION .. 234

35 API KEYS .. 237
35.1 STORING API KEYS IN A RELATIONAL DATABASE .. 239
35.2 ROLE-BASED ACCESS CONTROL (RBAC) .. 240
35.3 BEST PRACTICES FOR API KEYS AND ROLES ... 242

36 JSON WEB TOKENS .. 243
36.1 ISSUING JWTS .. 243
36.2 PROTECTING THE TOKEN GENERATION PROCESS .. 245
36.3 VERIFYING JWTS ... 247
36.4 JWT BEST PRACTICES .. 249

37 OAUTH2 AND OPENID CONNECT .. 251
37.1 TOKEN VERIFICATION ... 251
37.2 AUTHORIZATION CODE FLOW ... 253

38 LEGACY INTEGRATION SOAP WEB SERVICES .. 254
38.1 SAMPLE WEB SERVICES .. 254
38.2 MOCKING A WEB SERVICE ... 256
38.3 EXPOSING SOAP WEB SERVICES AS REST APIS .. 258
38.4 PROXYING SOAP .. 262

39 OPERATION ... 266
39.1 ADMIN CONSOLE .. 266
39.2 MONITORING WITH PROMETHEUS .. 268
39.3 ACCESS LOG .. 270
39.4 API TRACING ... 272
39.5 LOGGING AND SAVING WHOLE MESSAGES ... 274

40 GATEWAY PERFORMANCE .. 277
40.1 STREAMING ... 277
40.2 KEEP-ALIVE ... 277

The API Gateway Handbook

 8

0 Preface
APIs enable isolated applications to communicate with each other. It doesn’t matter whether
the applications live inside the same organization, in the cloud, or on the other side of the
world. APIs have become the universal language of systems. Even artificial intelligence relies
on them as a bridge to move beyond the data center and interact with the real world.

Interfaces existed long before today’s HTTP- and JSON-based APIs. But those earlier
approaches were hard to understand and required experienced specialists to implement.
Modern APIs changed that completely. They are designed to be simple, so simple that even
high school students can use them in their projects. This simplicity has fueled widespread
adoption and made APIs the backbone of digital communication.

Gateways connect frontend apps to backends, partners to platforms, and services to each
other. Yet as systems grow, the challenges grow with them: Security, observability, and
lifecycle management all become harder to manage. And this is where API Gateways prove
their value.

0.1 About This Book

What exactly does an API Gateway do and how can you use it effectively? This book answers
those questions and gives you a solid understanding of API Gateways and the problems they
solve. It covers architectural patterns, deployment models, key features, and advanced topics
like Zero Trust and APIOps. Whether you are securing public APIs, managing internal traffic,
or scaling your API ecosystem, gateways play a central role.

This is a practical guide: starting with HTTP basics and proxy fundamentals, then moving into
how gateways work, how to deploy and configure them, and how to solve real-world API
challenges such as routing, security, integration, and operations.

We wrote this book for architects, developers, and platform teams working with APIs in any
form. Our goal was to keep it concise, hands-on, and vendor-neutral, no marketing talk, just
real-world use cases, trade-offs, and design decisions.

Part I lays the foundation with general patterns, principles, and best practices in a vendor-
independent way.

Part II focuses on specific solutions to real-world problems. While the examples use the
Membrane Open Source API Gateway for demonstration, the patterns and techniques apply to
other gateways as well.

Think of this book as both a guidebook and a toolbox for working effectively with API
Gateways.

The API Gateway Handbook

 9

0.2 Why You Should Read This Book?

This book is for anyone working with APIs in an organizational setting, whether you're on a
platform team, in operations, or focused on API development and architecture. It offers
practical guidance from foundational ideas to advanced configurations and use cases.

You should read this book if:

• You're responsible for securing APIs
• You want to streamline API delivery using OpenAPI and APIOps practices
• You're evaluating or running an API Gateway
• You're building with microservices, working in a cloud-native stack, or integrating across

hybrid systems

No deep prior knowledge is required. We’ll walk you step by step through key concepts from
HTTP fundamentals to JSON Web Tokens and OAuth2.

Part I is especially useful for API designers, product owners, and project managers who need
a clear, high-level view of what API gateways are and how they fit into modern architecture.

Part II is tailored to developers, operations teams, and API specialists who want to see how
everything works in practice, with real examples and configuration details.

Ultimately, you should read this book if you're aiming to build secure, maintainable, and
scalable API infrastructure, and want a practical guide to help you get there.

0.3 How to Read This Book

If you're new to API Gateways, begin with Part I. It lays the foundation by introducing core
concepts in a logical, easy-to-follow progression.

Part II goes deeper, presenting practical examples (using the Membrane API Gateway) to
show how specific problems can be solved. Even if you work with a different gateway
product, the architectural patterns and techniques discussed here are broadly applicable.
Adapting the examples to your own environment should be straightforward.

You can read this book cover to cover, or simply dip into the chapters that are most relevant
to your work or current interests.

The API Gateway Handbook

 10

0.4 Why We Wrote This Book

While working on the documentation for Membrane API Gateway, we kept running into the
same problem: a reference guide is only helpful if you already know what you're looking for.
We found ourselves answering the same kinds of questions, not just “what does this setting
do?” but “why would I use it?” and “how does it fit into the bigger picture?”

That’s when we realized something was missing. To use an API Gateway effectively, it’s not
enough to understand the individual configuration options. You also need a solid grasp of how
gateways work behind the scenes and how they fit into modern architectures.

We wrote this book to fill that gap. It's meant to go beyond the usual documentation and offer
practical, hands-on guidance. Whether you’re routing traffic, securing APIs, transforming
messages, or exposing legacy systems, you will find patterns and examples to help you along
the way.

And yes, we’ll confess. We also wrote this book to give our open source gateway, Membrane,
some attention. But we’ve done our best to keep things fair. Part I is vendor-neutral and lays
out the general concepts every gateway expert should know. Part II just happens to use
Membrane for the hands-on examples. Well, someone had to be the demo gateway anyway.
Hopefully, you’ll find value in both parts (and if you end up liking Membrane along the way,
we won’t complain).

0.5 How We Wrote This Book

Writing this book was both a technical challenge and a creative process. The ideas, structure,
examples, and insights came from years of hands-on experience with real API gateway
deployments, the development of our open-source API Gateway, and countless conversations
with the community. But we didn’t write it alone.

AI was our patient assistant. Always ready to rephrase, polish, or fix clunky English, and
never once complaining about late-night edits. The ideas, concepts, and experience are 100%
human, but AI helped us express them more clearly (and spared you from our terrible
grammar).

0.6 How You Can Help Us

We believe books should be written like software: iteratively, with feedback and continuous
improvement. eBooks make this kind of agile process possible.

After a pre-release, this is the first edition of the book. Version 1.0.0. Like any software,
especially a 1.0.0, a book will have bugs. If you spot mistakes, have suggestions for
improvements, or want to share general feedback, we would love to hear from you. With your
help, we plan to release 1.1 in a couple of months.

The API Gateway Handbook

 11

Just send us an email at:

bayer@predic8.de or polley@predic8.de

Thanks for helping us make this book better.

0.7 About Us

Thomas Bayer

I’m Thomas Bayer, CEO of predic8, a software consultancy based
in Bonn, the former capital of Germany. My journey into distributed
systems began back in the 1990s with FIDO Net, early PC
networks, and CORBA. In 1998 I founded my first company,
Orientation in Objects, where I embraced Service-Oriented
Architectures built XML-based Web Services and began exploring
the early ideas behind REST.

Since then, I’ve worked on a wide range of commercial API projects
across industries. In 2004, I founded Osmotic Web in Boston to promote the still-nascent
concept of services, back when API wasn’t yet synonymous with HTTP interfaces. Even then,
I believed strongly in the power of open-source tools as a foundation for digital
transformation. That belief eventually led to the development of Membrane API Gateway.

Since founding predic8 in 2007, I’ve continued to evolve Membrane, contribute to open-
source projects, and support clients worldwide in designing, securing, and scaling APIs.

I regularly speak at conferences about software architecture, API design, and security, and I
write articles for tech magazines on these topics. On YouTube, I share insights and tutorials
on modern API technologies and architectural patterns (channel predic8 in German).

Outside the world of software, I enjoy learning languages, photography, Yoga and collecting
tools.

The API Gateway Handbook

 12

Tobias Polley

I'm Tobias Polley, co-CEO of predic8 and a software architect with
a focus on cloud infrastructure, operations, and API security. Since
joining predic8 in 2011, I’ve helped shape the architecture and
security foundations of Membrane, our open-source API gateway.
As a consultant, trainer, and international conference speaker, I’ve
supported organizations in securing their APIs and ensuring robust,
high-performance deployments.

I studied Mathematics, which continues to influence my analytical
approach to software design. Outside of work, I enjoy languages, exploring different cultures,
and running. More recently, I’ve taken up gardening—an unexpectedly rewarding
counterbalance to the digital world.

Happy reading, and great success with your API Gateway endeavors!

The API Gateway Handbook

 13

Part 1
API Gateways
Fundamentals

This part lays the groundwork for understanding API Gateways. We start by revisiting the
fundamentals, APIs, HTTP, and practical tools like curl and Postman, to make sure
everyone’s on the same page. From there, we move on to a deeper look at API Gateways:
what they are, the problems they solve, and how they help improve security, scalability, and
API operations.

Whether you’re just getting started or want to strengthen your understanding, Part I provides
the essential context you need to make sound architectural and operational decisions.

The API Gateway Handbook

 14

1 Foundation
First, let’s establish a solid foundation by covering the essential technical concepts you'll need
throughout this book. If you're already familiar with APIs, HTTP, and common API tooling,
feel free to skip ahead directly to the dedicated section about API Gateways in chapter 2.

1.1 Application Programming Interface (API)

When people use an application, they interact through its user interface (UI). But when
applications need to communicate with each other, they rely on an Application Programming
Interface, or API. APIs are designed specifically for machine-to-machine interactions,
allowing applications to communicate efficiently at a technical or business level.

Image: User Interface and API

Today, the most common API style is REST (Representational State Transfer), but
alternatives such as GraphQL and other HTTP-based approaches are steadily gaining
popularity.

HTTP-based APIs are widely adopted because HTTP simplifies communication between
different systems, even across organizational boundaries. HTTP’s ability to easily traverse
firewalls and network boundaries makes it particularly suited for widespread API
implementation. We'll explore HTTP further in the next section.

The API Gateway Handbook

 15

1.2 Hypertext Transfer Protocol (HTTP)

Most APIs are built on top of the Hypertext Transfer Protocol (HTTP), which serves as the
backbone of communication on the web. Originally invented over 30 years ago, HTTP is the
protocol that web browsers use to access web pages, making it fundamental to how we
interact with the internet.

HTTP is known for its simplicity, which contributes to its widespread adoption.
Understanding the basics of HTTP is essential for grasping how API Gateways function. In
this section, we will explore the core concepts of HTTP to provide the foundation needed for
the chapters to come.

HTTP operates on the Client-Server paradigm, where a client sends a request to a server, and
the server responds with the requested resource. For example, suppose a web browser wants
to access the URL https://api.predic8.de. Here’s how this interaction works step by
step:

1. Domain Name Resolution
The browser queries the Domain Name System (DNS) to find the internet address (IP
address) of the host api.predic8.de

2. Connection Establishment
Once the IP address is resolved the browser opens a connection to the web server.

3. Sending the Request
Then, the browser sends an HTTP request to the server asking for a resource.

4. Receiving the Response
The server processes the request and returns an HTTP response.

Exploring HTTP Communication with curl

Instead of using a graphical browser like Firefox, we can use a command-line HTTP client
such as curl to make a request and observe how HTTP communication works. For example:

curl -v https://api.predic8.de/shop/v2/products/7

This command initiates an HTTP request to the server. The option -v causes curl to show you
exactly what is going over the wire. In the output created by curl you will find the request
that might look like this:

The API Gateway Handbook

 16

GET /shop/v2/products/7 HTTP/1.1
Host: api.predic8.de

Let’s break this down:

1. The Request Line:
The first line is the request line:

o GET specifies the HTTP method, which in this case asks for a resource.
o /shop/v2/products/7 is the path to the resource on the server.
o HTTP/1.1 indicates the HTTP protocol version being used.

2. Host Header:
The Host header identifies the server the request is directed to (api.predic8.de). This is
necessary because multiple domains can share the same IP address, and the server needs
to know which site the client wants to access.

After receiving the client's request, the server processes it and sends back a response. For the
example above, the server might respond with:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "id": 7,
 "name": "Gac-Fruit",
 "price": 69.99
}

This can be broken into the following parts:

1. Status Line:
The first line of the response is the status line:

o HTTP/1.1 indicates the HTTP protocol version used for the response.
o 200 OK is the status code and reason phrase. The 200 status code tells the client

that the request has been successful.

2. Headers:
HTTP headers provide additional information about the response. In this case:

o Content-Type: The format of the message body below.

3. Response Body:
Following the headers, the server sends the response body, which contains the actual
content. In this case, the body includes a JSON document with data about the requested
product.

The API Gateway Handbook

 17

HTTP/2 and HTTP/3

HTTP/2 and HTTP/3 were introduced as successors to HTTP/1.1, aiming to improve
performance, especially for loading web pages in browsers. They bring features like
multiplexing, header compression, and server push to reduce latency and speed up page loads.

However, when it comes to machine-to-machine communication, such as APIs, the benefits
are limited.

Despite these improvements, both HTTP/2 and HTTP/3 preserve the core semantics of HTTP:
methods like GET, POST, and status codes like 200 OK still work the same way. This means
your existing HTTP-based APIs don't need to be redesigned to work over newer versions.

Many gateways today support HTTP/2 and even gRPC, which takes advantage of some of
HTTP/2’s features. But for general API design and compatibility, HTTP/1.1 is the most
widely supported choice, especially when interoperability is a priority.

1.3 HTTP Clients

When working with API Gateways, thorough testing is essential. Although a web browser can
serve as a basic HTTP client, specialized tools offer enhanced control and deeper insights for
API testing and exploration. For most of the examples in this book, the REST Client plugin
for Visual Studio Code is used. To follow the samples, you can choose from command-line
tools like curl, graphical interfaces like Postman, or editor plugins. The choice depends on
your workflow and personal preference.

curl

curl is a powerful and versatile command-line tool widely used for sending HTTP requests.
Its simplicity combined with scripting capabilities makes it perfect for quick testing,
automation, and integration in CI/CD pipelines.

Here's a basic example demonstrating how curl makes a GET request:

curl -v https://api.predic8.de/shop/v2/

The API Gateway Handbook

 18

This produces the output:

> GET /shop/v2/ HTTP/1.1
> Host: api.predic8.de
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< Content-Length: 363
<
{
 "links" : {
 "products_link" : "/shop/v2/products",
 "vendors_link" : "/shop/v2/vendors",
 "orders_link" : "/shop/v2/orders",
 "customer_link" : "/shop/v2/customers"
 }
}

This shows both the raw HTTP exchange and the JSON response body.

Resources

command line tool and library for transferring data with URLs (since 1998)
https://curl.se/

The API Gateway Handbook

 19

Postman

Postman is a user-friendly graphical tool for exploring and testing APIs. While it started as a
simple HTTP client, it has grown into a full-featured API platform with powerful
collaboration and automation features.

With Postman, you can group requests into collections, define environments for testing and
production, and use variables to manage dynamic data. Its built-in scripting capabilities allow
you to write pre-request scripts and tests, automate workflows, and validate responses.

Image: HTTP client in Postman

Resources

Postman API Platform
https://www.postman.com/

The API Gateway Handbook

 20

HTTP Client Plugins for Editors and IDEs

HTTP client plugins for editors and development environments like Visual Studio Code and
IntelliJ make it easy to test, debug, and script API calls directly within your IDE. They offer
a clean and efficient interface where you can view both the request and the response side by
side without hidden headers or metadata in separate tabs.

These plugins also let you:

• Write and organize multiple requests in a single file
• Save and reuse request files across projects
• Share requests with your team using version control (e.g., via Git)

They’re a great fit for developers who want to stay close to their code while working with
APIs.

In this book, you’ll find examples like the one below:

POST https://api.predic8.de/shop/v2/products/
Content-Type: application/json

{
 "name": "Pineapple",
 "price": 2.79
}

This may look like a captured HTTP exchange, but it's a detailed description of an executable
request. Unlike a typical HTTP message, which only includes the path (e.g., /products) after
the request line, this description lets you specify a full URL. That means you can include the
protocol (http or https), hostname, and port, providing the plugin with all the information it
needs to send the request to the server.

How to Use This Example

1. Copy the Example
Copy the HTTP request shown above and paste it into your editor.

2. Set the Language Mode
Change the language mode to HTTP, or save the file with a .http extension so your editor
recognizes it.

3. Send the Request
Click the Send Request button (usually visible above the request). The response will
appear in a panel on the right side of your editor.

The API Gateway Handbook

 21

These plugins also support features such as autocompletion, which makes writing HTTP
requests quick and comfortable.

Image: HTTP Autocompletion with the REST Plugin

The screenshot below shows Visual Studio Code after sending a request.

Image: Request and Response in the REST Client Plugin

The API Gateway Handbook

 22

Installing the REST Client Plugin in Visual Studio Code

It only takes a minute to set up.

1. Open the Extensions View
Click on the Extensions icon on the left sidebar in Visual Studio Code (or press
Ctrl+Shift+X or Command+Shift+X on macOS).

2. Search for "REST Client"
Type REST Client into the search bar.

3. Install the Plugin
Find the plugin by Huachao Mao and click the Install button.

Once installed, you’re ready to start sending HTTP requests directly from your editor, no
terminal or external tools required.

Image: REST Client Plugin in Visual Studio Code

Similar extensions are available for IntelliJ and other development environments.

Resources

REST Client, Microsoftt Marketplace
https://marketplace.visualstudio.com/items?itemName=humao.rest-client

JetClient - The Ultimate REST Client, Intellij
Marketplacehttps://plugins.jetbrains.com/plugin/21173-jetclient--the-ultimate-rest-client

The API Gateway Handbook

 23

1.4 Reverse Proxies

Now that we’re equipped with the right tools, let’s turn to a key network component: the
reverse proxy.

API Gateways are essentially specialized reverse proxies. They not only route requests but
also manage, monitor, and optimize communication between clients and backend services. To
understand what makes them different, and why they matter, it helps to first look at the
difference between a traditional proxy and a reverse proxy.

Proxies (Forward Proxies):
A traditional proxy, also called a forward proxy, sits on the client side of a connection,
between the client and the public internet.

Image: Forward proxy between client and Internet

Its primary purposes include:

1. Caching: Speeds up communication by storing frequently requested resources.
2. Access Control: Filters or restricts access to websites or content.

Reverse Proxies:
As the name suggests, a reverse proxy sits on the server side, right in front of one or more
backend servers. From the client’s perspective, it looks like they’re communicating directly
with the target server. But in reality, the reverse proxy receives the request and forwards it to
the appropriate backend server.

Image: Reverse proxy between Internet and server

The API Gateway Handbook

 24

A reverse proxy:

1. Accepts client requests
2. Forwards them to the appropriate server
3. Returns the server's responses to the client

Reverse proxies can provide additional value, such as:

• Load Balancing
Distributes incoming traffic across multiple backend servers to improve performance and
reliability.

• Security
Masks backend server details and filters potentially malicious requests.

• SSL/TLS Termination
Handles encryption/decryption to offload that work from backend servers.

• Logging
Records information about requests and responses

• Monitoring
Tracks system health, latency and error rates

In the following sections, we’ll explore how API Gateways build on reverse proxies to
address the unique challenges of APIs.

The API Gateway Handbook

 25

2 API Gateways
API Gateways are essentially reverse proxies but with a twist. They're specialized in handling
API traffic and come equipped with API centric functions. While a traditional reverse proxy
might only care about forwarding HTTP requests, an API Gateway understands the nuances
of API communication.

It speaks fluent JSON, knows how to decode JWT tokens, manages API keys, and can even
handle GraphQL queries. But more importantly, it tackles API-specific challenges like
security enforcement, rate limiting, message transformation, and traffic control all in one
place.

Think of it as a smart doorman for your APIs: not only does it open the door, but it also
checks IDs, limits the crowd, and makes sure no one's sneaking in anything suspicious.

2.1 Responsibilities of API Gateways

An API Gateway acts as the central point of control for managing API communication
between clients and backend services. It provides a wide range of capabilities that simplify
client interaction and strengthen backend services. Key responsibilities include:

Routing
API Gateways forward incoming requests to the appropriate backend services. The client
interacts only with the gateway and doesn’t need to know the internal network structure or
backend addresses. This abstraction simplifies the client and enables backend flexibility.

Security
Gateways provide critical security features, including authentication, authorization and
content inspection.

Logging, Monitoring and Tracing
They collect operational data about API usage by monitoring key performance indicators,
recording logs, and tracking request paths.

Message Transformation
API Gateways transform messages between different formats, such as converting XML
payloads into JSON or adapting data to meet client requirements. This functionality ensures
compatibility between clients and backend services.

Orchestration
In more complex scenarios, the gateway can combine responses from multiple backend
services into a single API response. For instance, a Gateway might aggregate data from
several microservices to deliver a unified response to the client.

The API Gateway Handbook

 26

Load balancing
By distributing incoming traffic across multiple backend servers, API gateways can ensure
that no backend becomes overwhelmed. This not only improves overall performance but also
enhances system availability and reliability.

Inventory Management
Gateways also aid in inventory management, providing visibility into all exposed APIs,
including tracking usage patterns and identifying outdated or deprecated services.

These capabilities make API gateways a critical piece of modern IT infrastructure, essential
for maintaining scalable, secure, and well-managed APIs.

2.2 Kinds of API Gateways

With over sixty API Gateway products listed on the API Landscape web page, choosing the
right one for your needs can be a daunting task. Many of these gateways are tailored for
specific scenarios. For example, there are gateways that focus on edge computing, enterprise
API management or AI integrations with advanced governance and policy features.

Image: API Gateway products @ API Landscape

The following subsections explore these categories and specializations in more detail, helping
you understand the strengths and use cases for each kind of API Gateway.

The API Gateway Handbook

 27

Edge Gateway

The Internet Protocol allows a gateway to be reachable from almost anywhere in the world.
But global reach doesn't guarantee consistent performance, latency and bandwidth can vary
significantly depending on the user’s geographic location. For many business applications,
that’s acceptable. But some applications require consistently low latency, such as gaming,
robotics, or autonomous vehicles. In these cases, even small delays are not acceptable.

Edge computing addresses this challenge by placing services physically closer to where
they’re needed. This proximity reduces round-trip time and improves responsiveness. When
API gateways are deployed in a distributed manner, there’s always an instance available
within the user's region. As a result, requests are handled with lower latency and greater
reliability.

Cloud Gateway

Major clouds like Amazon AWS and Microsoft Azure offer their own API Gateways that
integrate seamlessly into their respective cloud platforms. These cloud-native gateways
benefit from built-in scalability, security, and deep integration with cloud services.

In addition to conventional backends, serverless functions can also be used as backend targets.

However, you're not limited to using a cloud provider's built-in gateway. Almost any other
API gateway can also be deployed and configured to act as the entrance into a cloud
environment. This flexibility allows you to choose a gateway based on specific requirements,
such as cost, features, or portability across multiple cloud providers.

Gateway Libraries

Gateway libraries allow you to embed API Gateway functionality directly within your
applications, eliminating the need for a separate gateway deployment. By using these
libraries, you gain wide control over the gateway's behavior and can customize its features
according to your application's specific needs.

Prominent examples on the Java platform include Spring Cloud Gateway, which provides
comprehensive routing, security, and filtering features directly within Spring Framework-
based applications.

Kubernetes API Gateways

Kubernetes is an open-source container orchestration platform that enables the management
of containerized workloads and services, both on-premise and in the cloud. Within
Kubernetes clusters, API gateways can play a critical role: they manage traffic flowing into
the cluster, orchestrate communication between services, and provide security and
observability features.

The API Gateway Handbook

 28

If you are not working with Kubernetes, feel free to skip this section. However, if you use
Kubernetes, this section offers valuable insights on how API gateways integrate with, and
enhance your Kubernetes environment.

Kubernetes Ingress Controller

Applications running in a Kubernetes cluster must be accessible from the outside world.
Ingress controllers are Kubernetes native components that serve as gateways that route
external traffic into the cluster. They offer several key features to accomplish this task:

• Service Discovery:
An ingress controller can leverage the Kubernetes Service Discovery to automatically
discover which pods are serving as backends for an API. This dynamic discovery ensures
that traffic is always directed to the correct and currently available targets.

• Traffic Control:
To maintain high availability and reliability, requests must be routed only to healthy
endpoints. In the event of errors, retries are essential. Product-specific extensions or
service meshes often add common patterns such as circuit breakers and rate limiters,
managing traffic surges and preventing cascading failures.

• Observability:
All traffic going inside a cluster can be logged and monitored.

• Protocol Flexibility:
Besides HTTP, many Kubernetes API gateways also support TCP and gRPC. This
capability allows nearly any protocol to be proxied, providing flexibility in handling
diverse workloads.

• Tight Kubernetes Integration:
The most basic configuration of these gateways is deeply integrated with and native to
Kubernetes. Realizing advanced features however which are not standardized (like path
rewriting) is a bit cumbersome.

Several Kubernetes API gateways, such as Ambassador or EnRoute are built on top of Envoy
Proxy. Envoy offers high performance, extensive observability, and robust traffic
management features that are ideal for modern cloud-native environments.

This comprehensive set of features makes Kubernetes Ingress Controllers an essential
component for managing external traffic and ensuring that APIs remain scalable, resilient, and
secure within the dynamic environment of a Kubernetes cluster.

The API Gateway Handbook

 29

💡Sidenote: Kubernetes Gateway API

Gateway API is a Kubernetes subproject managed by a Kubernetes Special Interest Group
(SIG Network), aiming to standardize how services are exposed, and traffic is routed within
Kubernetes clusters.

The Gateway API provides a set of Kubernetes resource types (like Gateway, HTTPRoute, and
TCPRoute) beyond the Ingress API to standardize path rewriting, traffic management and
routing (e.g. 90%-10%-traffic splitting and traffic mirroring) in Kubernetes.

The phrase Kubernetes API Gateway can imply something similar to a full-featured API
Gateway like Kong, AWS API Gateway, or Tyk. The Kubernetes Gateway API is not
intended to replace traditional API Gateways or even traditional Kubernetes Ingress
controllers entirely. Instead, it's meant as a standard interface to define networking and
routing behavior, leaving actual implementation to specialized controllers.

Gateway API implementations still rely on existing networking solutions or ingress
controllers (like Istio with Envoy, LinkerD, Contour, Ambassador, or Traefik), which extend
and provide functionality behind these standardized interfaces.

Sidecars in Service Meshes

Gateways can be used to hide network complexity and the underlying infrastructure from
applications. All traffic to and from an application passes through such a gateway, enabling
enhanced security, observability, and traffic management.

In contrast to an ingress gateway positioned at the edge of the Kubernetes cluster, a sidecar
proxy operates directly alongside each individual application or infrastructure service within
the cluster itself.

Because sidecars run alongside every application, it’s critical that they have a minimal
resource footprint, often consuming less than 50 MB of RAM. These lightweight proxies
manage traffic not only to business applications but also to infrastructure components like
databases. As a result, they commonly support not just HTTP but also binary protocols like
gRPC or generic TCP connections.

Typical gateways in this category include Envoy, and other gateways built on top of Envoy,
such as Istio, Consul, or Ambassador, due to Envoy’s extremely efficient footprint—typically
around just 10 MB.

The API Gateway Handbook

 30

Artifical Intelligence Gateways

Interacting with large language models (LLMs) and other AI services can become costly very
quickly. AI Gateways help manage these costs by monitoring usage, enforcing quotas, and
applying rate limits. Some even offer fallback capabilities, automatically switching to
alternative (and potentially more affordable) models when necessary.

While most API Gateways can, in principle, handle AI-related traffic, specialized AI
Gateways, like Lunar.dev, are purpose-built for working with AI APIs. These tools come
with features designed specifically for LLM workloads, including:

• Detailed usage analytics
• Dynamic routing between models or providers
• Fine-grained access control for different users or teams

These gateways are a great choice for teams building AI-powered applications that need cost
control, flexibility, and visibility into usage patterns.

The API Gateway Handbook

 31

2.3 Open Source API Gateways

When choosing an API Gateway, you’ve got options. One key decision is whether to go with
a commercial product or an open source one. Fortunately, many gateways blend both worlds:
they’re open source but commercially backed. This means you get the flexibility and
transparency of open source, plus the support that often comes with a company behind the
scenes.

Examples include:

• KrakenD
A high-performance gateway focused on aggregating and transforming data.

• Kong
One of the most well-known gateways with an active community and a broad plugin
ecosystem.

• Tyk
Lightweight and developer-friendly, with great support for hybrid and cloud-native setups.

Then there’s APISIX, a standout in the pure open-source camp, developed under the Apache
Foundation. It’s built with performance and extensibility in mind and has quickly gained
popularity among cloud-native developers.

You’ll also come across Membrane, our open-source API Gateway. To keep the first part of
the book relevant to a broader audience, we’ve kept references to it minimal. In Part II,
however, you’ll find detailed information and practical examples based on Membrane.

Resources

API Landscape
https://apilandscape.apiscene.io/

Kubernetes Gateway API
https://github.com/kubernetes-sigs/gateway-api

Gateway API FAQ
https://gateway-api.sigs.k8s.io/faq/

The API Gateway Handbook

 32

3 How API Gateways Work
An API Gateway is essentially a reverse proxy with additional features specifically designed
to manage and optimize API communication. While you can technically use a reverse proxy
like nginx to forward API traffic, it lacks key API-centric capabilities. For example, a
traditional reverse proxy doesn’t understand API keys, the OpenAPI specification, or other
API-specific features.

To do its job, the API Gateway sits between API clients and backend services, just like a
reverse proxy. The diagram below shows how it fits into the architecture: the API Gateway
serves as the single entry point, exposing backend services under a unified domain such as
api.predic8.de.

Image: Location of an API Gateway in the message flow

Here’s how it works:

1. A client sends an HTTP request to the gateway, such as a GET /products request.
2. The Gateway inspects the request path and forwards it to the appropriate backend (e.g.,

server3).
3. The backend handles the request and sends a response.
4. The Gateway then relays that response back to the client.

From the client’s point of view, it’s talking directly to the API. Behind the scenes, though, the
Gateway is acting as a smart proxy, routing traffic, applying rules, and managing the flow.

At this stage, the behavior of an API Gateway closely resembles that of a reverse proxy.
However, while reverse proxies are designed for general HTTP request handling, API
Gateways provide additional, API-specific functionalities that cater to the unique
requirements of API communication. To provide the API centric functionality most gateways
are reverse proxies equipped with plugins adding API specific functionality.

The API Gateway Handbook

 33

3.1 Plugins and Policies

Plugins and policies are what elevate an API gateway beyond a simple reverse proxy. They
provide the functionality needed to transform, secure, and observe API traffic, along with
many other use cases. The exact terminology varies by product: some call them plugins,
others policies or filters, but the idea is the same.

Gateways like APISIX, Kong, and APIcast are built on top of fast, efficient reverse proxies
and come preloaded with a wide selection of plugins. These extensions are often grouped into
categories such as:

• Transformation – modify headers, rewrite URLs, change payload formats
• Authentication – enforce API key, JWT, OAuth2, or custom auth flows
• Security – protect against threats like SQL injection or XML bombs
• Observability – provide logging, metrics, tracing, and monitoring
• Traffic Control – manage rate limits, quotas, retries, and circuit breakers

Some gateways even maintain plugin marketplaces, allowing third-party vendors to publish
their own extensions for reuse or commercial distribution.

Image: Plugins at APISIX plugin hub

The API Gateway Handbook

 34

3.2 Message Flow

A call typically passes through the API Gateway twice as shown in the image below.

Image: Message flow between client, API Gateway and backend

The sequence is as follows:

1. Request Flow

1. The client sends a request to the Gateway.
2. The gateway processes the request (e.g., checking authentication)
3. Then the gateway uses a second HTTP connection to the backend and forwards the
request.

2. Response Flow

4. After processing the backend sends a response in the opposite direction.
5. The message passes the gateways response flow in the opposite direction. Further
processing can be applied to the response (e.g., transforming the payload or injecting
headers).
6. Finally, the gateway returns the response to the client over the original connection.

Plugins, when engaged in the request or response flow, can act like blocking requests with
invalid credentials or logging payloads to files.

The API Gateway Handbook

 35

3.2.1 Plugin Placement

API Gateways provide functionality through plugins. For a plugin to be effective, it must be
integrated “plugged” into the correct stage of the request or response flow.

Some plugins should be invoked on every request, regardless of which API is being called.
Examples include security policies or logging. To accommodate these universal requirements,
most API Gateways offer a global flow (or global pipeline) through which all messages pass.
By placing a plugin in the global flow, you ensure it is applied consistently across all APIs. In
the illustration below there is a JSON Web Token validator and a Logging plugin engaged in
the global flow.

Image: API Gateway with global and API local flows

Other plugins might only be relevant for a particular API or endpoint. For instance, you may
want a schema validation plugin to check the request format only for a certain API.

Gateways typically allow each API to have its own request and response flows. By placing a
plugin locally, you limit its scope to a specific route or service.

This flexibility, global vs. local flow and request vs. response placement, enables you to
control precisely where and how your gateway applies its functionality. By carefully planning
plugin placement, you ensure that each API and every request/response is handled according
to its unique requirements.

Some plugins need to be engaged in the request and response flow at the same time. In the
illustration below the OpenAPI plugin is part of both flows. This is necessary cause it has to
validate requests and responses.

The API Gateway Handbook

 36

Image: Visualization of an API in Membrane’s admin console

Let’s look at a different example. Suppose you have a backend service that can handle only
ten concurrent requests at a time. To protect it from overload, you’ll need a plugin that
maintains a counter:

• The counter is incremented when a request enters the flow.
• It’s decremented when the corresponding response is returned.

If the counter reaches ten, any new incoming requests must be blocked or denied until the
number of active requests drops below the threshold.

To accomplish this, the plugin must be engaged in both the request and response flow
simultaneously. It needs to track each call through its entire lifecycle to ensure the counter
accurately reflects the number of in-flight requests.

This kind of flow-aware logic requires stateful coordination inside the gateway, something
beyond what simple request filtering can achieve.

The API Gateway Handbook

 37

3.2.2 Native Plugins and Plugin Runners

Plugins can run directly inside the gateway’s runtime environment, sharing its memory and
CPU resources. This tight integration allows for fast communication between the gateway and
its plugins, enabling high-performance processing. However, for a plugin to run natively, it
usually has to be implemented in the same language—or at least a compatible runtime—as the
gateway itself.

The gateway’s underlying technology stack determines which languages are supported:

• Java-based gateways: Support plugins written in Java, Kotlin, or Groovy
• JavaScript-based gateways: Accept plugins developed in JavaScript
• C-based gateways: Allow native C plugins

To make plugin development easier and allow dynamic reloading without restarting the
gateway, some products embed a lightweight scripting runtime. A common choice is
OpenResty®, a Lua-based platform that combines NGINX with LuaJIT. Gateways like
APISIX, Kong, and 3scale (now part of IBM) use OpenResty to let developers write and
deploy Lua plugins directly into the gateway without recompilation or redeployment.

Plugin Runners

To enable the use of plugins written in a language different from that of the gateway core,
some API gateways support a feature called a plugin runner. This architecture allows, for
example, a plugin written in Python to integrate with a gateway implemented in Go. The
gateway communicates with the external plugin over the network, typically using efficient
protocols such as gRPC instead of HTTP to minimize latency.

The API Gateway Handbook

 38

Image: Extending an API with Python code via a plugin runner

However, relying on external plugin runners introduces certain trade-offs. Network
communication adds potential points of failure, such as latency spikes or connectivity issues
which could lead to delays or even downtime. Additionally, since the plugin runner operates
outside the core gateway process, every API call that engages the plugin must be routed
across a network boundary.

If your plugin is involved in both request and response processing (see steps 3 and 8 in the
image), it will be invoked twice for every single API call, once on the way in and again on
the way out. This can amplify latency and increase the complexity of failure handling.

Combining Plugins

Multiple plugins can work together to accomplish a task. Template, setHeader and extractor
plugins, are true team players and are often combined with other plugins.

The API Gateway Handbook

 39

For example, a request flow consisting of three plugins might extract a year value from an
XML body, store it in a variable, then use that variable in a template, and finally prettify the
resulting JSON.

Image: Multiple plugins working together

The glue that binds plugins together are expression languages. They provide the magic that
makes collaboration between plugins possible. In the next section, we’ll take a closer look at
how they work and why they matter.

3.3 Expression Languages

Writing a custom plugin for an API Gateway in Lua, Java or Go isn’t rocket science but it
requires some ramp-up. You'll need to learn the language it uses, set up a development
environment, and probably spend more time than you’d like just getting started.

Luckily, there’s a shortcut: expression languages.

Most API Gateways include one or more small, embeddable expression languages that let you
tweak behavior with just a few characters of code. These languages are more lightweight and
focused than general-purpose programming languages.

The API Gateway Handbook

 40

Think of it like this: instead of writing 50 lines of Java or C to query a database, you just write
a short SQL query like:

SELECT * FROM products

SQL is a Domain-Specific Language (DSL). It’s focused on interacting with databases and
hides all the low-level plumbing. Expression languages in gateways work the same way,
they’re DSLs designed for:

• extracting values from JSON or XML documents
• accessing property values from objects
• evaluating conditions

By using an expression language, you can get quick wins without diving into full plugin
development.

Popular expression languages include Google CEL, Jakarta Expression Language, MVEL,
Jsonpath, and XPath. Full-featured languages like JavaScript and Groovy are also
commonly supported. They're great for quick one-liners or even moderately complex scripts.

Expression languages typically run in a sandboxed environment, protecting the host system
while giving the script a set of context variables to interact with the gateway. For example, the
Groovy snippet below calls an add method on a header object provided by the gateway:

header.add("X-Foo", "42")

Let’s briefly explore a few popular choices. Before you go all-in on one, check that your
gateway supports it.

SpEL (Spring Expression Language)

SpEL is part of the Spring Framework and offers more advanced features than the Jakarta
Expression Language. It’s a powerful alternative to OGNL and MVEL, and it's widely used in
Spring-based applications.

Groovy

Groovy is a full-featured scripting language with seamless Java interoperability. Many Java-
based API gateways, such as Apiman and Gravitee support Groovy, allowing you to extend
gateway functionality using the full power of the Java ecosystem. You can even add libraries
to the classpath for advanced tasks like decoding JWTs, transforming XML/JSON, or
accessing databases.

Groovy is like Java’s laid-back cousin flexible, expressive, and powerful. But with great
power comes great responsibility, Groovy scripts might have full access to the underlying
JVM, that means they can read files, open sockets, or execute external commands,
capabilities that make security officers nervous. For this reason, some gateways run

The API Gateway Handbook

 41

Groovy in restricted or sandboxed environments or allow administrators to disable scripting
entirely in production.

Javascript

Thanks to embeddable JavaScript engines and native support for JSON, JavaScript is a natural
fit for API Gateways. Gateways like Apigee and Gravitee offer built-in support. It’s
especially handy for transforming JSON payloads. Consider this transformation example:

function convertDate(d) {
 return d.getFullYear()+"-"
 +("0"+(d.getMonth()+1)).slice(-2)
 +"-"+ ("0"+d.getDate()).slice(-2);
}

({
 id: json.id,
 date: convertDate(new Date(json.date)),
 client: json.customer,
 total: json.items.map(
 i => i.quantity * i.price).reduce((a,b)=>a+b
),
 positions: json.items.map(i => ({
 pieces: i.quantity,
 price: i.price,
 article: i.description})
)
})

Jsonpath

JsonPath is inspired by XPath and is designed for querying tree-structured JSON data. It’s
commonly used in API Gateways to extract data from incoming or outgoing payloads.

This expression:

$..article[].name

returns all name fields under any article object, regardless of nesting depth.

The API Gateway Handbook

 42

XPath

If you're working with XML payloads, XPath is the go-to choice. Often called SQL for XML
XPath provides concise, powerful expressions to navigate and extract values from XML
documents. It has a relatively shallow learning curve, yet it provides advanced features to
handle even complex querying tasks.

Take this expression, for example:

//article[@id=3]/name

it returns the <name> element of the <article> with an id attribute equal to 3.

In the screenshot below, you can see an online XPath expression tester in action. The left
panel displays the input XML document, the top field contains the XPath expression, and the
right panel shows the evaluation result. Such tools are useful to develop and test expressions.

Image: XPath expression tester with document view and result output

Tip: Be cautious when pasting sensitive data into online tools. You never know who might be
collecting or logging your input.

For most development environments, there are also local tools and plugins available that let
you safely experiment with JSONPath or XPath without sending your data over the internet.

The API Gateway Handbook

 43

Here are a few more useful XPath examples:

Expression Description
/articles/article/name Retrieves the text content of all articles

//article[1] First article element

//article[last()] Picks the last article element

//article[1]/@id Gets the id attribute of the first article.

3.4 Custom Plugins

Custom plugins let you extend or tweak your API Gateway's behavior seamlessly. They
integrate deeper than simple scripts, allowing you to run code not only during the request or
response flow but also during key lifecycle events like initialization and shutdown. Plus,
plugins often provide access to inner components like caches or the routing engine.

While writing a plugin requires more effort than a quick script, it gives you greater control
and the plugin becomes a first-class citizen of the gateway.

How you implement a plugin depends on the technology behind your API Gateway. For
example, Nginx-based gateways often use OpenResty with Lua, gateways written in Go (like
Ambassador) use Go, and Java-based gateways (like Gravitee or WSO2) are typically
extended with Java.

The API Gateway Handbook

 44

4 Deployment
This chapter introduces the core components of API Gateways and their deployment models.
It explains how to integrate an API Gateway into your organizational infrastructure, including
how to position it within your network architecture, work with firewalls, and operate
securely within a Demilitarized Zone (DMZ).

You’ll learn what to consider when placing gateways at the edge, in internal segments, or
across hybrid environments and how these choices affect security, performance, and
maintainability.

4.1 Gateway Components

API Gateways come in a variety of configurations. Some operate as standalone applications,
while others require additional components like databases, cache servers, or monitoring
tools.

Standalone Gateway (Stateless)

The simplest deployment consists of the gateway alone. In this stateless setup, the
configuration is typically stored in a local file. Changing the configuration often means
editing the file and restarting or resetting the gateway.

The advantage? A restart resets the gateway to a clean, known state like rebooting your
computer to fix a glitch. This kind of setup is simple, robust, and easy to manage.

Image: Minimalistic standalone API Gateway

The API Gateway Handbook

 45

Gateway with Database-Backed

It’s also common to store the configuration in a database. This enables features like a
graphical user interface (GUI) for editing the configuration and centralized management of
logs, metrics, or usage statistics. Multiple gateways can connect to the same database to stay
synchronized.

Image: API Gateway and cluster with shared database for configuration and metrics

The Kong Gateway, for example, supports both modes: it can run with a database to enable
full admin functionality, or without one for lightweight scenarios. This gives users the
flexibility to choose between feature richness and simplicity.

Extending Gateways with additional Components

Modern API gateways often support a modular architecture, allowing external components to
be integrated as requirements grow.

Common components include:

• Cache servers (e.g., Redis, Memcached)
Used to store tokens, session state, or counters for rate limiting across gateway
instances.

• Monitoring tools (e.g., Prometheus, Grafana)
For collecting metrics, visualizing traffic patterns, and triggering alerts.

• Log aggregators (e.g., Elasticsearch, Loki)
To centralize log collection and support advanced search or correlation.

• Security services
Such as external policy engines (like OPA), threat detection systems or data loss
prevention (DLP) filters.

Some gateways require these components for key features to function. Others provide
optional support for them, allowing you to start simple and scale as needed.

The API Gateway Handbook

 46

Image: Modular API Gateway setup with optional integrations

Gateways often follow a plug-and-play model: a minimal setup might start with just the
gateway and a configuration file, while features like token caching, traffic monitoring, or log
aggregation can be added step by step as requirements grow.

4.2 Gateway Positioning

An API gateway connects two distinct areas. Common scenarios include positioning gateways
between the public internet and internal company networks or bridging on-premise systems
with cloud-based infrastructure.

4.2.1 Exposing APIs to External Organizations

Organizations frequently need to provide external access to their APIs, for partners, service
providers, or customers, while preserving strict security boundaries. This calls for thoughtful
network design that protects sensitive internal systems from unauthorized access.

Typically, the first line of defense is a firewall, which shields internal networks from external
exposure.

The API Gateway Handbook

 47

Example: Self-Service Portal for an Insurance Company

Imagine an insurance company wants to offer customers a self-service portal to manage their
contracts. The main challenge is providing external access without compromising internal
security.

Demilitarized Zone (DMZ)

To tackle this, companies use a Demilitarized Zone, a secure buffer network situated between
the public internet and internal networks.

Image: Demilitarized zone between Internet and internal network

A DMZ has these key characteristics:

1. No direct routing between Internet and internal networks.
2. Inbound web traffic is directed to Web servers located within the DMZ.
3. DMZ hosts can initiate connections to internal resources.

A secure self-service portal can be setup as follows:

• A Web application runs in the DMZ, handling customer interactions.
• This Web app connects to internal backend services for data and business logic.

While effective, this setup exposes a complex application directly in the DMZ, creating a
sizable attack surface. To mitigate this, companies commonly:

1. Host critical applications within protected internal networks.
2. Use a reverse proxy in the DMZ, forwarding external requests securely to internal apps.

The API Gateway Handbook

 48

Image: DMZ with reverse proxy

Benefits of a reverse proxy:

• Reduced Attack Surface: A simple reverse proxy offers fewer vulnerabilities.
• Enhanced Security: Sensitive logic and data remain protected internally.

4.2.2 Backend for Frontend (BFF) Pattern

Modern web applications, particularly Single Page Applications (SPAs), run in the browser
as JavaScript apps. Unlike traditional web apps that render HTML on the server, SPAs talk to
backend services via APIs to fetch data and invoke functionality.

A BFF is a dedicated backend component located in secure zones like the DMZ, acting as a
tailored bridge between browser-based frontends and internal APIs.

Key characteristics of BFF:

• Dedicated per frontend
Each frontend typically has its own dedicated BFF.

• Tailored requests and responses:
The BFF handles API requests and ensures the frontend receives only the exact data it
needs.

• Request validation: Ensures frontend requests adhere strictly to formats and rules before
they reach sensitive internal services.

• Authentication and authorization
Manages security tokens, sessions, and access control.

The BFF pattern helps create a secure, maintainable, and frontend-optimized architecture
especially in environments where security boundaries like DMZs are in play.

The API Gateway Handbook

 49

Image: Backend For Frontends (BFF) in the DMZ

Challenges with the BFF Pattern

While the Backend for Frontend pattern improves security and is well-suited for modern
clients like Single Page Applications (SPAs), it comes with notable trade-offs:

1. Increased development effort and slower time to market
Building and maintaining a dedicated BFF for each frontend requires substantial
engineering effort. This additional layer can slow down product launches.

2. Maintenance overhead
Whenever internal APIs evolve, corresponding BFFs need to be updated as well. This
tight coupling increases coordination overhead across teams and adds friction to making
changes.

Replacing BFF with API Gateways

While the BFF pattern serves a purpose, it often creates more complexity than necessary. API
Gateways offer a simpler, faster alternative with several key advantages:

1. No custom code
Unlike custom BFF applications, API Gateways require no additional coding. APIs can be
exposed by configuration, significantly speeding up the process.

2. Faster deployment
Adding or updating an API on a gateway takes minutes. Compare that to the days or
weeks needed to roll out a custom BFF.

The API Gateway Handbook

 50

3. Scalability
API Gateways are designed to handle scale. It’s common to run hundreds of APIs on a
single gateway instance, without needing to spin up new services.

4. Standardization
Using an API Gateway ensures a consistent, reliable configuration process. This reduces
the risk of errors that can occur due to custom coding and manual maintenance in BFF
implementations.

5. Out-of-the-Box features:
API Gateways offer production-grade features right out of the box, such as rate limiting,
validation and authorization.

These capabilities turn an API Gateways into a robust, efficient, and secure alternative to the
Backend for Frontend approach, offering streamlined API management, accelerated
deployment, and a significantly faster time to market.

Image: Single API Gateway replacing multiple BFFs

The API Gateway Handbook

 51

4.2.3 Outgoing Gateways

An outgoing API Gateway is the reverse of the typical gateway setup. Instead of managing
incoming traffic from the outside world, it handles outbound requests from internal systems
to external APIs like Stripe, PayPal, or Twilio. It's also useful for accessing APIs provided
by business partners or public cloud services.

Image: Outgoing gateway routing API requests to external services

Rather than allowing any application in the company to connect to external APIs, an outgoing
gateway provides a central, controlled egress point. It helps to:

• Restrict outbound traffic to approved external APIs
• Limit external access to select internal applications
• Handle authentication by adding tokens or API keys
• Mask or sanitize sensitive data before it leaves the company
• Log and monitor outgoing traffic for auditing or compliance
• Simplify external API consumption by handling authentication, versioning, and

format conversions
• Validate responses before they enter internal systems
• Apply rate limiting to control usage and costs (especially useful for pay-per-use APIs

like LLMs)

An outbound gateway helps enforce consistent traffic policies and avoids a situation where
everyone builds their own outbound solutions.

The Problem with default Behavior

Most gateways are designed for inbound traffic. Using them as an outgoing gateway without
adjustment can unintentionally leak internal information.

The API Gateway Handbook

 52

Imagine an internal client sends this request to an outgoing gateway:

POST /payments
Host: outbound.example.com
Content-Type: application/json
User-Agent: SAP (compatible; 750 2.0; abap client 1.0)
X-Api-Key: 6ee7ffc8-5b57-4de6-90cf-02d78591a888
X-Api-Key-Gateway: a79ca858-561a-435e-a5ff-e848c6a2ed3e

{ "payment": "..." }

The X-Api-Key is needed to authenticate at the external API, and the X-Api-Key-Gateway
header to authenticate with the outgoing API Gateway to get permission to reach outside.

The gateway now forwards the request to the external API:

POST /payments
Host: api.example.com
Content-Type: application/json
User-Agent: SAP (compatible; 750 2.0; abap client 1.0)
X-Api-Key: 6ee7ffc8-5b57-4de6-90cf-02d78591a888
X-Api-Key-Gateway: a79ca858-561a-435e-a5ff-e848c6a2ed3e
X-Forwarded-For: 10.0.3.127

{ "payment": "..." }

The external API receives more than it should. Why is that a problem?

• User-Agent reveals internal technologies, in this case: SAP and its version.
• X-Api-Key-Gateway leaks internal credentials that should never reach the outside.
• X-Forwarded-For exposes an internal IP address, which could be used for fingerprinting

or profiling.

To safely use an API Gateway for outgoing traffic:

• Prevent the automatic addition of X-Forwarded header fields
• Don't forward internal-only headers
• Only pass required headers like Content-Type or external API credentials

💡 Sidenote: Outbound APIs in regulated Environments
Outgoing gateways are especially valuable in regulated industries, where strict auditing and
control over data flows leaving the organization are required.

The API Gateway Handbook

 53

4.2.4 Internal Gateways

API Gateways can be just as valuable inside the network, managing service-to-service
communication between internal applications.

Two main topologies have emerged: one central or multiple decentralized gateways.

One Central Gateway

In this model, all internal API traffic flows through a single, centrally managed gateway. This
creates a unified control point with several benefits:

• Centralized Governance
Monitoring, security, rate-limiting, and version control are handled in one place.

• Operational Efficiency
One single central gateway can reduce operational complexity, especially when each
gateway installation incurs costs.

However, this setup also has drawbacks:

• Single Point of Failure
A failure or performance issue in the central gateway can impact the availability of all
APIs.

• Vendor Lock-in
Relying on a central gateway product can bring back the same concerns once seen with
monolithic Enterprise Service Buses (ESBs). When an entire organization depends on a
single critical installation, replacing it later, especially after support ends, can become a
costly and risky endeavor.

Decentralized Gateways

In a decentralized setup, multiple lightweight gateways are distributed across the organization.
Each gateway serves a specific domain, team, or platform. Modern lightweight gateway
solutions make installation and maintenance relatively easy.

The API Gateway Handbook

 54

Different types of gateways can be deployed depending on the needs of the environment, such
as:

• Internet-facing gateways for publishing APIs.
• Cloud gateways for managing API access within or across cloud environments.
• Container-native gateways to handle traffic within platforms like Kubernetes.
• Integration gateways with connectivity to messaging systems or legacy protocols such as

Web Services

Each type of gateway can be deployed in multiple locations and with multiple instances if
needed. The advantages of a decentralized approach include:

• Increased Resilience
Eliminates the risks of a single point of failure.

• Flexibility
Enables teams to select the right gateway for their use case.

• Scalability
Makes it easier to grow the infrastructure alongside API demand and traffic volume.

The main downside is added complexity. Managing and mastering multiple different
gateways across teams and environments adds overhead in coordination and monitoring.

Microgateways

Microgateways are purpose-designed for minimal resource usage, often consuming less than
100 MB of RAM. They are ideal for highly scalable, containerized environments where
memory and startup time matter. Gateways implemented in efficient languages like Go or
C++ tend to perform particularly well in these scenarios.

The API Gateway Handbook

 55

The table below shows memory footprints of selected gateways based on simple runtime
measurements:

Gateway RAM Footprint
in MB

Platform Comment

Microgateways

Envoy

14 C++

KrakenD

20 Go

traefik

23 Go

tyk

72 Go

Lightweight Enterprise Gateways

APISIX

209 nginx, C, Lua Gateway and etcd registry

Gravitee

416 Java

Kong

368 nginx, C, Lua Without database

Membrane 195 Java

Table: Microgateways

Note: Memory usage depends on the specific version and setup. These values were obtained
through practical measurements and are meant for rough comparison not as formal
benchmarks.

Even the heavier gateways in this list are relatively lightweight compared to traditional
enterprise API gateways, which require significantly more memory, disk space, and external
services. All gateways shown here are more or less suitable for microgateway use depending
on the scenario.

The API Gateway Handbook

 56

4.3 Clustering Gateways

To ensure high availability and handle large volumes of traffic, API gateways can be
deployed as a cluster. Since gateways are often stateless, meaning they don't retain session
data or request history, they’re well-suited for horizontal scaling. You can simply spin up
multiple instances behind a load balancer to distribute incoming requests.

Image: Cluster of API Gateways behind a load balancer.

However, some use cases require stateful behavior, such as:

• Session-based authentication (e.g., with cookies)
• Accurate rate limiting

Statelessness makes scaling easy, but in these cases, it can create issues. For example, if a
client’s requests are routed to different gateway instances, and each instance keeps its own
rate limit counter, the client may effectively bypass rate limits.

To manage state in a clustered gateway setup, two main strategies are used: shared state and
sticky sessions.

The API Gateway Handbook

 57

Shared State

A shared cache or centralized storage system, such as Redis or Memcached, can synchronize
state across gateway instances. This allows each instance to access the same session data,
rate-limit counters, or authentication tokens, ensuring consistent behavior regardless of which
instance handles a request.

Image: Gateways sharing a cache server like Redis to manage a unified state

💡Sidenote: Why Redis?
Redis is a high-performance, in-memory key-value store often used for caching and transient
data. It supports data structures like counters, lists, and expiring keys, making it ideal for tasks
like rate limiting or session tracking across distributed systems.

The API Gateway Handbook

 58

Sticky Sessions (Affinity)

An alternative is to configure the load balancer for session affinity (also known as sticky
sessions). This ensures that requests from the same client are consistently routed to the same
gateway instance, typically using a session cookie. This way, state remains local to each
gateway instance but still behaves consistently for each client session.

Image: API Gateway instance selection based on session ID

It’s common practice to place a dedicated load balancer in front of a gateway cluster.
However, many modern gateways come with built-in load balancing capabilities. In some
setups, the gateway itself can act as a load balancer, distributing requests across multiple
backend services.

💡 Tip: Whenever possible, design and deploy your gateways to be stateless. Stateless
gateways simplify scaling, improve reliability, and significantly ease the deployment and
operational complexity.

4.4 Chaining Gateways

It’s common in real-world architectures to chain multiple API gateways, each with a distinct
role in the infrastructure. Gateways often form a pipeline, with each one handling a specific
layer of responsibility, from external traffic filtering to internal routing and observability.

A typical gateway chain might include:

• A load balancer and API Gateway in the DMZ
Provides initial security such as authentication, input validation, and protection against
malformed JSON or XML payloads.

The API Gateway Handbook

 59

• An internal API Gateway
Resides within the corporate network, responsible for routing and access policies.

• An ingress gateway in a Kubernetes cluster
Directs external traffic into the cluster and distributes it to the correct services.

• Sidecar gateways (proxies in a service mesh)
Deployed alongside individual services, handling service-to-service communication,
traffic shaping, and observability features like tracing and metrics.

Image: Chain of multiple gateways from DMZ to backend

In microservices architectures, it’s also common for each service to be protected by its own
gateway or sidecar proxy, adding further layers to the chain.

Trade-offs in Gateway Chaining

Routing traffic through multiple gateways naturally introduces some performance overhead.
Every hop adds latency and processing time. The challenge is to balance security,
observability, and reliability against acceptable performance.

Still, the overhead might be lower than you think.

We conducted an experiment chaining 500 gateways sequentially on a single machine. Each
gateway passed the request to the next, using the local operating system’s networking stack.
The test used a POST request with a 100 KB payload, expecting a 100 KB response. Even
with this extreme setup, the total round-trip time remained under 200 milliseconds.

This result demonstrates that even a long chain of gateways introduces only moderate latency.
In real-world scenarios, where the number of chained gateways is typically between two and
five, the performance penalty is often negligible and outweighed by the benefits of layered
control, observability and modularity.

The surprisingly low latency also supports current architectural trends, especially in Zero
Trust environments, where clear segmentation and policy enforcement zones are essential.

The API Gateway Handbook

 60

4.4.1 Zoning and Zero Trust

While many diagrams in this book show a simplified architecture with just three network
zones: Internet, DMZ, and Intranet, this doesn’t reflect the reality of most enterprise
environments. Nor is it sufficient from a security standpoint.

This basic three-zone model creates a potential attack path.

An attacker might breach a single poorly secured system in the Intranet, then use it as a
steppingstone to move laterally within the network. Given the number and variety of systems
inside most corporate networks, it's likely that at least one weak point exists.

Image: Attacker jumping from compromised intranet system to internal targets

Fine-Grained Zoning

To strengthen internal security, many organizations introduce additional internal zones—
each with its own security boundary. This strategy limits lateral movement within the
network, helping to contain potential breaches. Technologies like Software-Defined
Networking (SDN) make it easier to define, manage, and adapt these segmented network
zones dynamically.

But more zones bring more complexity.

Finer-grained segmentation makes API routing between services trickier. Internal systems
that previously talked directly to each other now need to cross multiple boundaries—each
enforcing different access rules.

That’s where internal API gateways come into play. These gateways manage traffic between
zones, acting as both routing hubs and policy enforcement points. They help ensure that
only authorized, well-formed, and validated traffic can pass from one zone to another.

The API Gateway Handbook

 61

Image: Gateway routing API traffic between internal network zones.

By placing gateways at these boundaries, organizations maintain both control and visibility,
without sacrificing modularity or security posture.

Zero Trust Networking

Another approach gaining traction is the Zero Trust model. Unlike traditional perimeter-
based models, Zero Trust does not automatically trust anything, not even devices or
services inside the internal network.

Under Zero Trust principles:

• Internal network connections are considered untrusted by default.
• Every communication must be authenticated and authorized, regardless of its origin.
• All network traffic, especially between services like APIs and gateways, must be

encrypted and verified, typically using TLS or mutual TLS (mTLS).

The good news? API Gateways are well-suited for Zero Trust environments. They can:

• Terminate and initiate TLS or mTLS connections
• Authenticate and authorize requests
• Enforce fine-grained policies per service or client

This makes them a natural fit for enforcing Zero Trust policies at network and application
boundaries.

The API Gateway Handbook

 62

5 Installation
In the past, setting up an API gateway often meant using a graphical user interface or
managing it as part of a larger, sometimes heavyweight, API management platform.

Today, that’s changed. Modern gateways are typically installed and configured using DevOps
practices. API Gateways are often packaged as containers, making them easy to deploy,
update, and scale. This shift enables teams to automate the deployment process and maintain
consistent configurations across development, staging, and production environments.

5.1 Containerized Gateways

Packaging API gateways into containers offers several benefits. It ensures portability and
consistency across development, testing, and production environments. Teams can focus on
configuring and scaling the gateway without worrying about the underlying infrastructure.

Containerized gateways are easy to deploy and integrate into CI/CD pipelines. Many
gateways can be launched with a single Docker command, making it simple to get started or
to test locally.

Here are some examples of popular gateways and how to start them using Docker:

Envoy

docker run -p 9901:9901 -p 10000:10000
envoyproxy/envoy:v1.73.7

Kong

docker run \
 -e "KONG_DATABASE=off" \
 -p 8000:8000 -p 8443:8443 \
 kong:latest

Membrane

docker run --name membrane -p 2000:2000 predic8/membrane

Tyk

docker run --name tyk -p 8080:8080 tykio/tyk-gateway

The API Gateway Handbook

 63

Certain gateways, require additional infrastructure running in separate containers. For
example, APISIX uses a Docker Compose file to launch an etcd registry alongside the
gateway container.

5.2 APIOps

APIOps applies DevOps principles such as automation, version control, and continuous
delivery to the API lifecycle. It treats both APIs and API gateways as code, enabling
repeatable, testable, and secure deployments.

By integrating APIOps into your workflow, the configuration and deployment of gateways
becomes significantly more streamlined. Gateway configurations and OpenAPI specifications
are stored in source control systems like Git, with pipelines managing validation, build, and
deployment.

A typical APIOps deployment pipeline for updating an API gateway might work like this:

1. Merge
A configuration change is merged into the main branch of the git repository, triggering the
pipeline.

2. Verification
The gateway configuration is validated for syntax and structural correctness. This may
include OpenAPI linting.

3. Build
A container image is built with the updated configuration and pushed to a container
registry.

4. Deployment
The image is deployed to the target environment whether that's Kubernetes, a VM
cluster, or a cloud-hosted gateway instance.

Image: DevOps-based API deployment process

The API Gateway Handbook

 64

This automated, GitOps-style workflow ensures:

• Consistent configurations across environments
• Fewer manual errors
• Faster and safer rollouts
• A transparent audit trail linked to source control

APIOps doesn't just improve efficiency it also increases confidence in your delivery pipeline.

💡 Sidenote: Why apply APIOps to gateways?
Treating gateway configuration as code brings the same consistency and agility that DevOps
brought to application code. It also helps prevent configuration drift between environments,
which often sneaks in through ad hoc changes in UIs or quick fixes in the terminal.

The API Gateway Handbook

 65

6 OpenAPI
OpenAPI has become the de facto standard for describing HTTP-based APIs. But it’s more
than just a documentation format. As we already saw in the chapter on configuration,
OpenAPI can play a central role throughout the entire API lifecycle.

In this chapter, we’ll explore how OpenAPI is used by API Gateways. You’ll learn how
gateways can:

• Be configured directly from OpenAPI descriptions
• Rewrite addresses in OpenAPI documents on the fly to reflect public-facing endpoints
• Validate incoming and outgoing messages against OpenAPI definitions

These capabilities not only improve the developer experience but also help enforce
consistency, contract compliance, and security at runtime.

💡 Sidenote: What is OpenAPI?
The OpenAPI Specification (originally known as Swagger) defines a standardized way to
describe APIs using YAML or JSON. It goes beyond just documentation, OpenAPI
descriptions can drive tools for mocking, validation, code generation, testing, and automation.
In many setups, these specifications even serve as the configuration source for API gateways,
making them a cornerstone of modern API design and deployment.

6.1 OpenAPI-based Configuration

OpenAPI provides a structured, machine-readable format for describing APIs, covering
everything from endpoints and HTTP methods to parameters, authentication requirements,
and response formats.

Today, many modern API gateways support OpenAPI as a first-class configuration source.
Instead of setting up routes, authentication, and validation rules manually, you can often just
hand the gateway an OpenAPI file and let it handle the rest.

This approach makes the OpenAPI document a single source of truth for both documentation
and deployment. It simplifies onboarding, reduces human error, and enables repeatable,
automated rollout of new APIs across environments.

Take AWS API Gateway as an example: you can import an OpenAPI file directly in the
AWS Console to create and deploy a new API in just a few clicks.

The API Gateway Handbook

 66

Image: Creating an API from an OpenAPI document in the AWS Console

The API Gateway Handbook

 67

Once imported from OpenAPI, the API definition appears in the AWS Console. All paths,
methods, and parameters are visible and can be further adjusted if needed:

Image: API created from an OpenAPI document in the AWS console

This approach isn’t just convenient, it fits perfectly with automated workflows. Since
OpenAPI files are structured and versioned, they can live in your git repository and serve as a
single source of truth. From there, a CI/CD pipeline or the gateway itself can pick up changes
and trigger deployments automatically.

Image: Automated deployment pipeline triggered by OpenAPI changes

The API Gateway Handbook

 68

To improve reliability and consistency, teams often enforce a pull-request-based workflow for
OpenAPI definitions. Any change triggers a CI/CD pipeline that runs automated checks, such
as syntax validation, style guide enforcement, and security scanning, and may also require
manual review from another team.

One widely used tool in this process is Spectral, a linter for OpenAPI documents that
supports both custom and community-maintained rule sets. There are even security rules for
the Top 10 OWASP API Risks.

💡 Sidenote: What is Spectral?
Spectral is a customizable linter for OpenAPI that helps teams enforce consistency, quality,
and security across their API definitions. It can validate from basic syntax to more advanced
concerns like security policies and API Style Guides. For teams working with APIOps,
Spectral often becomes a central piece in the toolchain, automating governance and ensuring
every API stays clean, compliant, and production-ready.

By using OpenAPI as the central artifact for both documentation and configuration, teams can
align developers and operations, reduce duplication, and avoid drift between environments. It
enables a shared source of truth that supports automation and fosters collaboration.

💡 Sidenote: Configuration as a document
Using OpenAPI files as configuration artifacts blurs the line between documentation and
deployment. Instead of writing two separate things, API docs and gateway configs, you only
need one. That reduces duplication, simplifies maintenance, and gives developers and
operations teams a shared artifact to collaborate on.

Resources

OpenAPI Specification
https://swagger.io/specification/

Spectral (OpenAPI Linter)
https://github.com/stoplightio/spectral

OWASP Ruleset for Spectral:
https://github.com/stoplightio/spectral-owasp-ruleset

OWASP Top 10 API Security Risks – 2023
https://owasp.org/API-Security/editions/2023/en/0x11-t10/

The API Gateway Handbook

 69

6.2 OpenAPI URL Rewriting

An OpenAPI document doesn’t just define the structure of requests and responses, it also tells
clients where to find the API. This is what’s known as service discovery.

Below is an example snippet from an OpenAPI file that lists two environments:

openapi: '3.0.3'
info:
 title: Fruit Shop API
 version: '1.0'
servers:
 - url: http://srv5.predic8.de/test/shop/v2
 description: test
 - url: http://srv5.predic8.de/shop/v2
 description: production

Now picture this: You’ve got an API Gateway in front of the backend. A developer
downloads the OpenAPI file from the gateway that simply forwards the original document
from the backend, unchanged. The developer generates a client based on that OpenAPI, and
the client ends up talking directly to the backend, bypassing the gateway.

Image: Bypassing the API Gateway caused by an unmodified OpenAPI document

Ideally, the backend should only be reachable through the gateway. If you’re lucky, the
firewall will block the request.

URL Rewriting

The fix is to change the addresses. The gateway rewrites the OpenAPI document on the fly.
More specifically, it replaces the servers section with the public-facing address of the
gateway.

Sure, you could manually adjust the OpenAPI and serve that modified version instead of
fetching it from the backend. But that quickly becomes a maintenance headache. Whenever

The API Gateway Handbook

 70

the backend API changes, say, a new endpoint is added or a parameter changes, you’d have to
update your copy by hand. That’s easy to forget, especially in larger teams or automated
pipelines.

Letting the gateway dynamically rewrite the document avoids that problem. It passes through
the original structure and definitions from the backend, but swaps in the correct URL so that
clients always talk to the gateway, not the backend directly.

Image: API Gateway rewriting URLs in OpenAPI descriptions

Here’s how the modified OpenAPI might look after rewriting:

openapi: '3.0.3'
info:
 title: Fruit Shop API
 version: '1.0'
servers:
 - url: https://api.predic8.de/test/shop/v2
 description: test
 - url: https://api.predic8.de/shop/v2
 description: production

Clients will now get the correct address and requests go through the gateway, where they can
be secured, logged, or transformed as needed.

The Image shows the Swagger UI with the rewritten URLs in the server dropdown.

The API Gateway Handbook

 71

Image: Two rewritten server URLs in the Swagger UI

6.3 Message Validation with OpenAPI

OpenAPI describes an API in detail, which makes it ideal for validating messages.

Many API gateways and testing tools can ensure that requests and responses follow the rules
laid out in the OpenAPI description. The validation can happen in real time, right as traffic
flows through the gateway.

Gateways can validate every part of an HTTP exchange:

• HTTP Method and Path
Including path variables and query parameters.

• Header Fields
Ensuring required headers are present and correctly formatted.

• Payload Format and Structure
Verifying the Content-Type and validating JSON or XML bodies against the defined
schema.

• Security Mechanisms
Confirming that authentication and authorization rules.

• Status Codes
Making sure the response code matches the operation's definition.

By enforcing what’s described in the OpenAPI document, gateways increase consistency
across environments, help detect integration issues early, and reduce security risks. This
makes APIs more predictable, secure, and easier to manage.

The API Gateway Handbook

 72

The listing below shows an error message returned by the API Gateway after a request failed
OpenAPI validation:

HTTP/1.1 400 Bad Request
Content-Type: application/problem+json

{
 "title": "OpenAPI Message validation failed!",
 "type": "https://... /problems/validation",
 "validation": {
 "method": "POST",
 "path": "/users",
 "errors": {
 "REQUEST/BODY#/name": [
 {
 "message":
 "'name' exceeds max length of 20 charachters!"
 }
]
 }
 }
}

🔎 Looking for Hands-On Examples?
If you want to see how these OpenAPI features work in practice, head over to chapter 27.
There, you'll find real-world configurations and use cases like URL rewriting and request
validation using the Membrane API Gateway.

The API Gateway Handbook

 73

7 API Orchestration
A single API can aggregate or coordinate multiple underlying APIs to fulfill a request. This is
called API orchestration. Instead of working in isolation, the orchestrating API coordinates
multiple internal APIs to fulfill a request, acting like a conductor leading an ensemble of
backend services.

Orchestration is especially common in Service-Oriented Architectures (SOA) and
microservices environments, where functionality is split into small, focused services.
Because each of these services is highly specialized, useful business processes often require
combining several of them.

Take the example below: an order API depends on customer, article, and price APIs. Rather
than duplicating functionality, the order API serves as a composite that orchestrates responses
from all three.

Image: Orchestration of fine-grained APIs

Orchestration can improve structure, encapsulation, and reusability. But it also comes with
trade-offs: the orchestrator becomes a point of dependency, and if not carefully managed,
this can increase coupling and fragility in the system.

Some API gateways support built-in orchestration features, such as:

• Calling multiple backend services per request
• Merging responses
• Executing conditional logic or applying transformations

Alternatively, API orchestration can be implemented outside the gateway using tools such as:

• Workflow engines (e.g., Camunda, Zeebe)
• Integration frameworks (e.g., Apache Camel, Spring Integration)
• Low-code platforms or function runtimes (e.g., AWS Step Functions, Azure Logic

Apps)

The API Gateway Handbook

 74

These tools can manage more complex flows, long-running processes, or asynchronous tasks
that go beyond what an API gateway is typically designed for.

Typically, in API orchestration, the response from one API call becomes the input for the
next. In practice, this is rarely straightforward. The involved APIs often speak different
languages: one might return JSON, another expect XML, and their field structures may vary
widely.

This means orchestration often requires:

• Data format conversion (e.g., JSON to XML)
• Field mapping (e.g., renaming, flattening, or restructuring data)

When using an API Gateway for orchestration, make sure it supports robust transformation
features such as JSONPath, XPath, and templating capabilities. Without these, you’ll likely
run into limitations when integrating APIs with mismatched expectations.

💡 Sidenote: Orchestration vs. Choreography
In orchestration, a central API Gateway or workflow engine explicitly controls the
interactions between services. In choreography, services react to events and coordinate
themselves, without a central controller. Gateways typically implement orchestration, not
choreography.

The API Gateway Handbook

 75

8 Security
API Gateways sit between clients and backend services, placing them in a natural point to
enforce and enhance API security. As the central entry point for API traffic, a gateway can
address a wide range of concerns, starting with transport-level protections and extending
through authentication, authorization, and application-level defense.

By offloading these responsibilities from backend services, the gateway helps standardize
and centralize security policies across APIs, reducing complexity and improving your
organization’s ability to respond to evolving threats.

An API Gateway can:

• Handle transport encryption using SSL/TLS
• Authenticate and authorize client requests
• Validate input and output messages against business rules or schemas
• Protect against message-based attacks, including those targeting XML, JSON, or

GraphQL
• Log and audit traffic, users, and sensitive events

The following sections introduce key security concepts—integrity, confidentiality,
authentication, and authorization—which form the foundation for understanding how
secure API communication works in practice.

8.1 Integrity

Digital messages are easy to change but hard to trust. Without protection, a receiver has no
way to tell whether a document was altered.

That’s where integrity checks come in. A signature or cryptographic hash can ensure that the
content hasn’t been tampered with.

Integrity is a fundamental requirement in API security. One of the most common use cases is
token validation. Tokens such as JSON Web Tokens are signed so that the recipient (usually
the API gateway or backend) can verify that they haven’t been changed and that they were
indeed issued by a trusted authority.

8.2 Confidentiality

In 2017, a routing incident caused internet traffic for Google, Facebook, and Microsoft to be
redirected through Russia. The event underscored a critical risk: traffic can be silently
detoured without the sender or receiver knowing.

The API Gateway Handbook

 76

On the open internet, the route a message takes is unpredictable. It might pass through dozens
of routers and networks, including infrastructure owned by third parties or even potential
attackers. Without proper protection, anyone along that route could intercept and read the
data.

This is where encryption comes into play. Encrypting messages ensures that even if someone
captures the traffic in transit, they can’t make sense of it without the appropriate keys.

To ensure confidentiality with APIs, two main strategies are used:

1. Encrypting the message itself
This ensures that even if the message is intercepted, only someone with the correct key
can read its contents. This approach is often used for data at rest or in very sensitive API
scenarios.

2. Establishing a secure communication channel
More commonly in APIs, confidentiality is achieved by creating a secure, encrypted
connection between the client and server. This is done using Transport Layer Security
(TLS), the successor to SSL. With TLS, the message content remains private while in
transit, protecting it from eavesdroppers. We’ll discuss TLS in the next chapter.

💡 Sidenote: TLS vs. Message Encryption
TLS encrypts the entire communication channel—headers, payloads, and all—but only while
the data is in transit. Once it reaches the endpoint and is decrypted, the protection ends.
Message-level encryption (such as with JSON Web Encryption) secures the message itself,
so it stays protected even after transmission. This is especially useful when messages pass
through intermediaries or are stored for later processing.

8.3 Authentication & Authorization

In API security, it’s important to distinguish between two foundational concepts:
authentication and authorization.

Authentication is the process of verifying who someone is. For example, when you’re asked
to show an ID card, the goal is to confirm that you are the person you claim to be. In the
world of APIs, this often means logging in with credentials, using an API key, or presenting a
client certificate.

Once a subject is authenticated, we know their identity, but we don’t yet know what it is
allowed to do.

Authorization, on the other hand, determines what actions the authenticated subject is
permitted to perform. For instance, an API might verify that a user is authenticated as
“Tobias” but only allow users with the “admin” role to perform a DELETE request on a
certain endpoint.

✔ Authentication = Who are you?
✔ Authorization = What are you allowed to do?

The API Gateway Handbook

 77

Authorization in APIs

In the context of APIs, authorization typically governs actions like:

• Can a user perform a POST?
• Is this token allowed to access /admin?
• Does this client have permission to read a certain resource like /contracts/334?

Gateways, API backends, or security policies often enforce these rules by checking roles,
scopes, or claims within a token.

Resources:

'Suspicious' BGP event routed big traffic sites through Russia, The Register 2017/12/13
https://www.theregister.com/2017/12/13/suspicious_bgp_event_routed_big_traffic_sites_thro
ugh_russia/

The API Gateway Handbook

 78

9 Transport Layer Security (TLS/SSL)
API security relies heavily on Transport Layer Security (TLS) to securely transmit data and
tokens between systems. In this chapter, we explain why transport-level security is essential,
clarify the difference between SSL and TLS, and show how TLS is used by API gateways.

9.1 The Man in the Middle

API communication involves two parties: the client and the server. To protect the integrity
and confidentiality during the exchange, it’s essential that no one in between can read,
manipulate, or redirect the data.

TLS protects against man-in-the-middle (MitM) attacks, where an attacker silently
intercepts or modifies messages in transit. Without TLS, any router, proxy, or network node
along the path could potentially tamper with the communication.

TLS is the de facto standard for securing internet traffic. In fact, higher-level security
mechanisms like OAuth2 or OpenID Connect assume that the transport layer is already
secure. In other words: TLS is a foundation, not an option.

9.2 SSL and TLS

You might still hear the term SSL (Secure Sockets Layer), but it’s outdated. SSL was the
original protocol developed by Netscape in the 1990s to secure internet communications.
However, due to serious vulnerabilities, it has long been deprecated. Its successor, Transport
Layer Security (TLS), is now the modern standard for encrypted connections.

Despite this, many people still refer out of habit to TLS as SSL.

Two Benefits of TLS

Transport Layer Security is known for providing confidentiality by encrypting data in transit.
However, TLS can also provide authentication. It uses certificates and certificate authorities
(CAs) to verify the identities of communicating parties, ensuring that both the server and
optionally the client are who they claim to be. This dual function of TLS helps prevent man-
in-the-middle attacks and unauthorized access.

The API Gateway Handbook

 79

9.3 API Gateways and TLS Connections

API gateways sit between clients and backend services and play an active role in securing
communication.

In most setups, two separate TLS connections are established:

• One between the client and the gateway
• One between the gateway and the backend service

Image: TLS communication between client, gateway and backend

This design allows the gateway to terminate TLS, inspect traffic, apply security policies,
validate tokens, and perform transformations before forwarding requests.

💡Sidenote: TLS Passthrough
Some gateways also support TLS passthrough, where the TLS session is not terminated at
the gateway. Instead, the encrypted connection is forwarded directly from the client to the
backend.
While this approach offers end-to-end encryption, it comes with trade-offs: the gateway
cannot inspect, transform, or route traffic based on content. As a result, this mode is less
common and used only in specific scenarios where full privacy is prioritized over control.

The API Gateway Handbook

 80

10 Content Protection
A well-worn adage in security is: "never trust user input.” In the world of APIs, that
becomes: “never trust the request.” This holds especially true for structured data formats
like XML, JSON and GraphQL. Their flexibility and expressiveness also make them
attractive targets. Attackers can exploit specific characteristics of these formats to overload
systems, bypass validation, or trigger unintended behavior.

The importance of content protection is underscored by the number of known parser
vulnerabilities. According to cve.org, there are nearly 2,000 documented vulnerabilities
related to JSON, and more than three times as many for XML.

Image: Search result for JSON vulnerabilities on cve.org

In the following sections, we’ll take a closer look at some common attacks targeting JSON,
XML, and GraphQL.

The API Gateway Handbook

 81

10.1 JSON Attacks

JSON-related attacks exploit the way JSON payloads are parsed and processed. They can take
advantage of parser inconsistencies, implementation flaws, or overwhelm systems with
excessive or maliciously structured data. Below are some of the most common techniques:

Duplicate Fields
JSON objects aren’t supposed to contain duplicate keys. But if they do, parsers handle them
differently, some use the first occurrence, others use the last. Consider this example:

{
 "article": "Smartphone",
 "quantity": 1,
 "price": 998,
 "price": 10
}

If validation checks only the first price field, but the business logic uses the second one, an
attacker could exploit this inconsistency to manipulate prices or bypass validation.

Excessively Large Arrays or Strings
Oversized arrays or unusually long strings can consume significant memory and processing
time. JSON, for example, does not impose limits on string length or array size—so a value
might be just a few bytes, or several gigabytes. Without safeguards, this kind of input can
overwhelm the receiver, degrade performance, or even cause denial-of-service (DoS)
conditions through memory exhaustion or processing timeouts.

Deeply Nested Structures
Nesting JSON structures deeply may look innocent but can be devastating. Even small
payloads with excessive depth can slow down or crash parsers by consuming disproportionate
resources.

{
 "a": {
 "b": {
 "c": {
 "d": {
 "e": {
 "f": {
 }
 }
 }
 }
 }
 }
}

The API Gateway Handbook

 82

10.2 XML Attacks

XML offers a rich set of features, but that richness also creates risk. Its extensibility and
flexibility make it prone to several attack vectors, especially when parsers are overly
permissive or insecurely configured.

One of the most notorious threats comes from Document Type Definitions (DTDs), which
allow the definition of entities that can reference external resources. If DTD processing is
enabled, attackers may exploit XML External Entities (XXE) to access sensitive files or
trigger unexpected network requests.

External Entity Injection

An attacker might send a request containing a XML payload like the following:

💡 Sidenote: Why this example looks different
XXE attacks are considered so dangerous that we couldn’t include this example as plain text.
Security tools and virus scanners would flag or block the book, and most likely your corporate
firewall would even prevent you from downloading your copy of the book. The safest way to
include it was as an image. That’s why this listing looks different from the others.

If the backend XML parser accepts this input and external entities are enabled (which they
often are by default in older systems), the parser will replace the &e; entity with the content of
the referenced file /etc/passwd in this case. The result: sensitive data is silently leaked.

Beyond leaking files, XXE attacks can also be used for the disclosure of confidential data,
network port scanning, SSRF (Server-Side Request Forgery), or denial of service.

💡 Sidenote: Why is XML still a risk?
While many systems have moved on to JSON, XML is still in use, especially in enterprise and
legacy systems. That makes XML security just as relevant as ever.

The API Gateway Handbook

 83

10.3 GraphQL Exploits

GraphQL offers powerful capabilities for building flexible APIs, but its dynamic nature also
introduces unique security challenges. Without proper safeguards, GraphQL endpoints can be
abused leading to excessive backend load, denial-of-service conditions, or even the bypassing
of rate limits.

Recursive Queries

One of the most common attack patterns is a recursive query, where a client uses circular
references to force the server into excessive work. Here’s an example:

{
 products {
 vendor {
 products {
 vendor {
 products {
 vendor {
 products {
 vendor {
 products {
 name
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

At first glance, the query seems innocent, only about 400 bytes in size. But it triggers a chain
of lookups across the product and vendor relationship that can rapidly expand the response
size. Even on a small demo API with fewer than 20 products, this query can generate more
than 3 megabytes of response data.

This kind of pattern is a textbook example of a Denial of Service (DoS) risk: the server does
a lot of work, while the client does very little. With even deeper recursion, the backend can
quickly become overloaded.

The API Gateway Handbook

 84

Introspection Abuse

GraphQL provides powerful introspection features that allow clients to query metadata about
the schema. While useful during development, these features can become a valuable
reconnaissance tool for attackers. By leveraging introspection, a hacker can:

• Discover all available types, fields, queries, and mutations
• Map out relationships between objects
• Identify undocumented or internal API functions
• Construct highly targeted attacks

The query below retrieves all types defined in the GraphQL schema of an API which can
include even hidden or internal fields.

{
 __schema {
 types {
 name
 fields {
 name
 }
 }
 }
}

Batching

In GraphQL, multiple queries or mutations (i.e., remote function calls) can be grouped into a
single message. Consider the following document:

{
 q1: products(id: "2") { name }
 q2: products(id: "3") { name }
 q3: products(id: "7") { name }
 q4: products(id: "8") { name }
 q5: products(id: "10") { name }
 q6: products(id: "11") { name }
 q7: products(id: "13") { name }
}

Although it's just one message, the server will treat this as seven separate queries. Because
GraphQL queries can be written very compactly, a small payload of just a few kilobytes may
contain hundreds of queries or mutations (remote procedure calls).

Rate-limiting plugins at the API gateway, which are often unaware of GraphQL internals,
typically count the entire batch as a single call. This can be exploited by attackers to:

• Generate heavy workloads with minimal effort is the door for possible denial of service
attacks

• Bypass rate limits and perform brute-force attacks

The API Gateway Handbook

 85

10.4 Content Protection

To mitigate content-based attacks, you can add content protection rules directly into your
API gateway configuration. Once enabled, the gateway scans and inspects incoming payloads
before they reach backend services.

If a message matches known attack patterns or violates configured constraints, the gateway
can take one of two actions:

• Block the message entirely, responding with an appropriate 4XX HTTP error code
• Sanitize the content by removing or replacing harmful elements (e.g., prototype fields, or

XML DTDs)

This layer of protection is especially valuable when working with legacy systems, which may
lack input validation or use outdated parsers with known vulnerabilities.

Gateway Support for Content Protection

Different gateway products offer different levels of support for content inspection and
validation. Here's a quick comparison:

Gateway JSON
Protection

XML Protection GraphQL Protection

Apigee ✓ ✓ ✓ passthrough only

Envoy ✓ ☐ ☐

Gravitee ✓ ✓ ✓ (in beta June 2025)

Kong ✓ ☐ Not natively
supported

☐ Via community plugins

Tyk ✓ ☐ Limited XML
support

☐ GraphQL introspection
filtering in Enterprise

AWS API
Gateway

✓ by JSON
schema
validation

☐ Limited XML
support

✓ GraphQL support via
AppSync

Table: Support for content protection in different gateways

Properly configured content protection ensures that APIs do not become a backdoor for parser
bugs, protocol tricks, or malformed payloads. For high-risk formats like XML or GraphQL,
limit what the gateway will accept before passing it on.

Vendor-specific MIME Types

The API Gateway Handbook

 86

Vendor-specific MIME types like application/vnd.predic8.product+json use the +json
suffix to signal that the content is JSON-encoded, even though the full media type is custom.
This convention allows generic JSON parsers to process the payload as long as they recognize
the suffix, so it's essential that your API Gateway or security tools don’t just check for
application/json but also any type ending in +json.

Resources

XML External Entity (XXE) Processing
https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing

10.5 Content Type Confusion

When content protection is enabled, API gateways typically apply validations such as
blocking DTDs or detecting recursive structures based on the declared Content-Type.
However, these checks are only executed if the Content-Type header is correctly set.

Take the following example:

POST /api/user HTTP/1.1
Content-Type: text/plain

{ "role": "customer", "role": "admin", "name": "Tobias" }

The payload is clearly JSON. But since the Content-Type is declared as text/plain, the
gateway treats it as plain text, where virtually any byte sequence is considered valid, and skips
all JSON-specific inspections. This opens a loophole that attackers can use to bypass payload
validation and security filters.

One might argue that the backend should reject the request based on the incorrect Content-
Type. But in practice, many backend implementations either ignore the Content-Type
altogether or assume the payload is JSON by default. This behavior makes them vulnerable to
so-called content-type confusion attacks.

The API Gateway Handbook

 87

How to guard against content-type confusion?

Ensure the Content-Type of incoming requests matches the expected format. This can be
enforced using a policy in the API Gateway, or more effectively by validating requests against
an OpenAPI description.

In OpenAPI, every request body is tied to a declared content type. The validator checks
whether the Content-Type header in the request matches what's defined in the API spec. If
not, the request is rejected.

In the snippet below, the request body is explicitly declared to have the content type
application/json.

requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Product'

💡 Tip: Use content protection in combination with a strict Content-Type check.
OpenAPI validation ensures that the Content-Type header in incoming requests matches the
expected value. This prevents attackers from bypassing security filters by mislabeling payload
formats.

The API Gateway Handbook

 88

11 Injection Attacks
Injection attacks happen when attackers insert malicious input into a system, causing it to
execute unintended commands or queries. Common types include SQL, command, code,
XPath, LDAP, and XML External Entity (XXE) injections. The impact can vary from leaking
or altering sensitive data to gaining unauthorized access or even full system compromise.

11.1 Injection Attacks on APIs

APIs can unintentionally open channels for attackers to inject malicious code into backend
systems. For instance, consider the following HTTP request where an injection is part of the
query string:

GET /rest/products/search?q=apples')) UNION SELECT id, email,
password, '4', '5', '6', '7', '8', '9' FROM USERS--
Host: localhost:3000

In this example, the search string is prematurely terminated by the ' character, and an SQL
injection follows, designed to extract sensitive user information from the database. This attack
succeeds if the backend service dynamically builds an SQL query without proper
parameterization (e.g., using prepared statements).

Beyond query parameters, virtually any part of an HTTP request such as path parameters,
headers, payloads, or even JSON Web Tokens (JWT) can be a vehicle for injection attacks.

11.2 Input Validation with OpenAPI

Input validation is one effective ways to reduce the risk of injection attacks. It can block many
malicious inputs outright or at least make exploitation more difficult. Take the search
parameter q from the previous example. If it were defined in OpenAPI like this:

parameters:
 - in: query
 name: q
 schema:
 type: string
 maxLength: 20
 pattern: '[A-Z0-9]*'

Only uppercase letters and digits would be accepted, and the input must not exceed 20
characters. That already shuts out many injection attempts. The SQL injection from the earlier
example, for instance, used 85 characters, far beyond the 20-character limit enforced here.

Tip: Input validation isn't just about correctness. It reduces the attack surface at the edge.

The API Gateway Handbook

 89

To make APIs more secure, define every parameter and field as precisely as possible. Use:

• Length limits (minLength, maxLength)
• Enumerations (enum)
• Regular expressions (pattern)
• String formats (email, uuid, date-time, etc.)

These constraints aren’t just helpful for documentation they actively guard against attacks.

To enforce these practices, static analysis tools like Spectral can lint your OpenAPI
definitions. The OWASP API Security ruleset already includes checks for the OWASP API
Security Top 10, but you can add custom rules too.

Here’s an example Spectral rule that ensures all string-based query parameters include a
maxLength

rules:
 query-parameters-should-have-maxLength:
 description: Query parameters should define maxLength
 message: '"{{property}}" is missing a maxLength.'
 given: '$.paths[*][*].parameters[?(@.in=="query")]'
 then:
 field: schema.maxLength
 function: defined

That said, input validation alone won’t eliminate all injection threats. Blocking every
suspicious word like union, drop, and or would mean rejecting even legitimate user input in
some cases. Validation is your first line of defense, but it should be combined with other
techniques like proper escaping, parameterized database queries, and contextual output
encoding.

11.3 Why Validation Alone Isn’t Enough

Input validation is often cited as an effective defense against injection attacks. But consider
this email:

"'OR 1=1--"@predic8.de

At first glance, it doesn't appear valid, yet common email validators accept it without
complaint:

The API Gateway Handbook

 90

Image: Excerpt of validation result at https://verifalia.com/validate-email

Even though this string passes email validation rules, it contains an SQL injection that can
bypass authentication. Using this as a username, an attacker can potentially log in without a
valid password, usually as the first user listed, often the administrator.

While validation at the gateway or service is valuable and raises the bar for attackers, it is
insufficient on its own. Genuine protection against SQL injection requires secure coding
practices at the backend, primarily through parameterized queries (prepared statements) rather
than dynamic SQL queries.

Unfortunately, budget or legacy constraints often make secure coding impractical. In such
cases, external protection measures via firewalls or API gateways become necessary.

11.4 Effective Injection Protection

As mentioned, secure backend coding and robust architecture are the most effective defenses.
However, several tools and strategies can offer additional protection when placed in front of a
backend service:

Injection Signatures

• Injection scanners analyze incoming requests for specific patterns indicative of potential
attacks. While effective, they may also produce false positives. For example, scanning for
the ' character could incorrectly block valid names like O'Reilly.

• Curated rule sets, such as those provided by Snort, offer constantly updated detection
signatures.

The API Gateway Handbook

 91

Machine Learning and Artificial Intelligence

• AI-driven tools can detect anomalies and suspicious patterns more flexibly than fixed
signature-based rules. Many platforms and plugins are now leveraging AI for advanced
injection detection.

11.5 API Gateway vs. Web Application Firewall (WAF)

Both API gateways and Web Application Firewalls (WAFs) can protect against injection
attacks. However, their roles differ slightly:

• WAFs typically excel at generic injection detection, and they're usually already integrated
into enterprise infrastructure.

• API Gateways are ideal for input validation specific to APIs. Using JSON or XML
schema definitions (XSD), gateways can validate requests precisely per API endpoint. If
this validation is offloaded to the WAF, configuration updates must accompany every API
change, increasing management complexity.

Many enterprises adopt a layered approach, leveraging both gateways and WAFs: the WAF
handles generalized injection scanning, while the gateway provides schema-specific
validation.

Resources

OWASP Top 10 API Security Risks – 2023
https://owasp.org/API-Security/editions/2023/en/0x11-t10/

SPECTRAL, JSON/YAML Linter with Custom Rulesets Documentation
https://docs.stoplight.io/docs/spectral/674b27b261c3c-overview

SNORT, Open Source Intrusion Prevention System (IPS)
https://www.snort.org/

The API Gateway Handbook

 92

12 Message Validation
Message validation is a core defense mechanism in API security. Since APIs often operate at
the boundary of systems or organizations, they must carefully inspect incoming data before
processing it.

To validate effectively, the system needs a clear understanding of what a valid request looks
like. These expectations should come from the business side. Only they can define what
values, formats, and rules make sense. Once defined, these rules can be formalized and
handed over to the API Gateway or security tools.

API Gateways can enforce these definitions using structured formats such as JSON Schema,
XML Schema (XSD), OpenAPI, or WSDL. With precise schemas in place, gateways can
reject invalid input before it reaches backend systems.

Image: The Request Validation Plugin for the APISIX Gateway

12.1 Response Validation

While much attention is given to input validation, output validation is often an afterthought.
It’s easy to assume that since the backend generates the output, it's safe by default. But
overlooking what an API sends out can result in unintentional information disclosure.

The API Gateway Handbook

 93

Why Is Response Validation Important?

Consider the following API error response:

{
"status": 400,
"trace":

"org.springframework.http.converter.HttpMessageNotReadableException:
JSON parse error: Unexpected character ('\"' (code 34)): was expecting

comma to separate Object entries; nested exception is
com.fasterxml.jackson.core.JsonParseException: Unexpected character
('\"' (code 34)): was expecting comma to separate Object entries\n at
[Source:
(org.springframework.util.StreamUtils$NonClosingInputStream); line:
3, column: 4]

at
org.springframework.http.converter.json.MessageConverter.readJavaType
(MessageConverter.java:391)

at
org.springframework.http.converter.json.HttpMessageConverter.read(Mes
sageConverter.java:343)

At
org.springframework.web.servlet.mvc.method.annotation.RequestProcesso
r.resolveArgument

at
org.springframework.web.servlet.DispatcherServlet.doService(Dispatche
rServlet.java:964)

at
org.springframework.web.servlet.FrameworkServlet.processRequest(Frame
workServlet.java:1006)

at
org.springframework.web.servlet.FrameworkServlet.doPost(FrameworkServ
let.java:909)

at javax.servlet.http.HttpServlet.service(HttpServlet.java:696)
at

org.springframework.web.servlet.FrameworkServlet.service(FrameworkSer
vlet.java:883)

at javax.servlet.http.HttpServlet.service(HttpServlet.java:779)
at

org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(Appl
icationFilterChain.java:227)

... 51 more",
}

This stack trace unintentionally reveals detailed information about the internal workings of
the server:

Technology Stack

• The application uses the Spring Framework 5.3.x and Jackson for JSON deserialization
2.13.x.

• It runs on a Tomcat/Catalina server 8.5.x or 9.0.x.
• Line numbers in the trace helped to estimate specific library versions.

The API Gateway Handbook

 94

Specific Methods and Libraries

• Method names like MessageConverter.readJavaType and classes like
DispatcherServlet reveal how requests are handled internally.

• Attackers can craft payloads targeting known vulnerabilities or quirks in these methods.

Armed with specifics like these, an attacker could search the Common Vulnerabilities and
Exposures (CVE) database for known exploits affecting the versions of Jackson, Spring, or
Tomcat in use. Attackers like verbose and detailed error messages. Once they know what
technologies are in play, they can iterate with malformed requests to provoke different error
behaviors and harvest more clues.

This is why output validation is just as important as input validation. By filtering sensitive
information like stack traces or exception details, you deny attackers the information they
need for targeted, informed attacks.

The screenshot below shows know vulnerabilities of an old Jackson library that can serve a
hacker for his attack.

Image: Known vulnerabilities in an outdated Jackson library

The API Gateway Handbook

 95

Don’t forget output validation. For example, the Apache APISIX gateway includes a plugin
for validating incoming requests, but it doesn’t offer a built-in plugin for validating responses.
This missing piece can result in sensitive or confidential data unintentionally leaking in the
response, especially if backend services return overly detailed error messages or internal
fields.

💡 Tip: Block Stack Traces in Responses
Always block or sanitize stack traces and verbose error messages from backend systems.
These can reveal sensitive internal details, such as class names, frameworks, and line
numbers, that attackers can use to identify vulnerabilities. Use API Gateways or middleware
to catch and rewrite such responses before they reach the client.

Resources

Keyword search for CVE Records @MITRE Corporation.
https://www.cve.org/

The Problem with Response Validation

Activated response validation can lead to awkward validation errors where the problem is
something completly different.

The image below illustrates this case. An error occurs during processing in the backend at
step 3. The backend returns an error message step 4. The response validation in the gateway
expects a valid response that is described in a JSON Schema, XML Schema or Open API
document. Instead it gets a generic error message from the backend that is not described. As a
result the validaiton will fail and the client gets a validation error message instead of the
database failure in the example. Because the error the client gets does not reflect the root
cause the search for the problem can be hard.

Image: Failed Response Validation after Backend Error

The API Gateway Handbook

 96

Some gateways support to turn off validation for error messages. But this simple solution is
not satisfieing as technical details from error messages can slip through the gateway to the
client.

It would be ideal if the backend is returning only error messages that are described in the
schema used at the gateway to validate the message. Unfortunately this isn't often the case in
real world. There are old or off the shelf backends that return their own error message.

There is a solution to this dilemma. Let the gateway transform the backends error messages to
a format that is described by the schema and the validator can handle.

Image: Transforming error custom messages from the backend before validation

For validation to work, error messages must be defined in a JSON Schema, OpenAPI spec, or
XML Schema. We’ll look at how to do that in the next section.

12.2 Describing Error Messages

To properly validate responses, you need not only a schema for successful messages but also
for error messages. Otherwise, you risk running into an awkward situation: the backend
returns a helpful error, but the user just sees a vague “response does not match schema” from
the gateway. Not exactly helpful.

Problem Details (RFC 7807)

RFC 7807, Problem Details for HTTP APIs, defines a standardized format for error
messages in HTTP-based APIs. It’s designed to be both human-readable and machine-
parseable, making it easier for clients to understand and process errors in a consistent way.

The API Gateway Handbook

 97

Here’s a typical example:

HTTP/1.1 404 Not Found
Content-Type: application/problem+json

{
 "title" : "Product 7 not found",
 "type" : "https://membrane-api.io/problems/user",
 "uri" : "/products/7"
}

The title and type fields are required according to the problem details specification,. The
uri field shown here is an optional, custom extension added by the API. That’s the beauty of
Problem Details, you can start with a standard structure and easily extend it to fit your needs.

Validating Error Responses with OpenAPI

OpenAPI allows you to define not only successful responses but also structured error
responses. This lets an API Gateway validate error messages just as it would validate success
payloads, helping to prevent unintended data leaks or malformed error responses.

Here’s an example OpenAPI snippet for an endpoint that returns both a successful and a 404
error response:

paths:
 /products:
 post:
 responses:
 '200':
 description: Ok
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Product"
 ‘404’:
 description: Not Found
 content:
 application/problem+json:
 schema:
 $ref: '#/components/schemas/Problem'

Notice how the 404 response explicitly uses the application/problem+json media type and
references a shared Problem schema.

The API Gateway Handbook

 98

Here’s how the schema might be defined:

components:
 schemas:
 Problem:
 type: object
 additionalProperties: false
 properties:
 type:
 type: string
 description: URI reference identifing the problem
 title:
 type: string
 description: Human-readable summary
 uri:
 type: string
 description: Request URI

The Problem object includes the mandatory type and title fields from RFC 7807, plus a
custom uri field specific to this API. The line additionalProperties: false is key. It
ensures that unexpected fields in error messages are caught by the OpenAPI validation at the
gateway. This helps prevent sensitive internal details from slipping through in verbose error
responses.

💡 Security Tip: Error Validation with OpenAPI
Use the same level of precision for your error schemas as for your success responses.
OpenAPI validation doesn’t just improve documentation, it helps enforce clean, consistent,
and secure API behavior.

The API Gateway Handbook

 99

Status Code Wildcards in OpenAPI

Listing out every possible HTTP error code in your OpenAPI spec can get tedious.
Fortunately, OpenAPI supports wildcards to help you keep things concise and maintainable.

Here’s a sample:

paths:
 /products:
 post:
 responses:
 '200':
 description: Ok
 ...
 '404':
 description: Not found
 ...
 '4XX':
 description: Bad Request
 ...
 '5XX':
 description: Server Error
 ...
 'default':
 description: default
 ...

Using wildcards:

• '4XX' matches any client-side error (400–499)
• '5XX' matches server-side errors (500–599)
• 'default' catches any other status codes not explicitly defined

This makes your API definitions more compact while still covering a wide range of potential
responses. It’s especially useful when combined with shared response schemas like Problem
JSON.

💡 Tip: While wildcards are helpful for reducing redundancy, you should still define specific
responses when you want to return custom messages for certain status codes.

Resources

Problem Details for HTTP APIs
https://datatracker.ietf.org/doc/html/rfc7807

The API Gateway Handbook

 100

12.3 JSON Validation

In OpenAPI documents, message bodies are described using JSON Schema—even if the
OpenAPI file itself is written in YAML (yes, that's totally valid). When an API Gateway
validates a message against an OpenAPI definition, it's essentially performing JSON Schema
validation under the hood.

However, OpenAPI validation doesn't just stop at the message body, it also covers the path
and HTTP method. JSON Schema validation, by itself, only applies to the content of the
message body. If you only have a standalone JSON Schema, you can still set up validation
against it.

Let's look at a quick example. Here's a simple JSON Schema:

{
 "type": "object",
 "properties": {
 "condition": {
 "type": "string",
 "enum": ["new","used"]
 }
 }
}

This defines an object with one field, condition, which may only contain either "new" or
"used". Now consider this incoming message:

The validation will fail, "old" is not part of the allowed enum. The gateway can reject this
request immediately, preventing bad or unexpected data from ever reaching your backend.

To enforce this kind of control, many gateways support JSON Schema validation via plugins
or built-in policy engines.

💡 Sidenote: JSON Schema Basics
JSON Schema is a widely adopted format for describing JSON data. It lets you define types,
required fields, formats, and constraints such as min/max values, regex patterns, or
enumerated values.

The API Gateway Handbook

 101

Resources

JSON Schema Reference
https://json-schema.org/understanding-json-schema/reference

Michael Droettboom, et al, Space Telescope Institute, Understanding JSON Schema
https://json-schema.org/UnderstandingJSONSchema.pdf

12.4 XML Validation

Just like JSON uses JSON Schema, XML has XML Schema Definitions (XSDs) for
validation. These schemas define the expected structure of an XML document, its elements,
attributes, data types, and the required order.

An API Gateway can use XSDs to verify whether a message is valid, meaning it adheres to
the rules defined in the schema.

This kind of validation is especially useful for legacy systems or B2B integrations, where
XML remains a widely used format.

12.5 OpenAPI Validation

Since OpenAPI typically includes schema definitions for both requests and responses, it’s
well suited for validating API messages.

One key advantage of OpenAPI over standalone JSON Schema validation is its tight
integration with HTTP paths and methods. This allows the API Gateway to automatically
determine which schema applies to a request, based on the endpoint being called. With plain
JSON Schema, you’d need to define separate schema files for each request and response or
fall back to overly generic definitions that offer less protection.

Some API Gateways support OpenAPI validation natively, while others provide tools that
convert OpenAPI documents into validation policies or configuration files for the gateway.

📌 Note: Part II explores how to configure OpenAPI-based message validation in practice.

The API Gateway Handbook

 102

13 API Keys
API keys offer a simple way to secure your API without the need for complex protocols.
They allow you to control who can access your API, make basic authorization decisions, and
even track usage patterns. This straightforward approach makes API keys especially
appealing when you need rapid integration and minimal overhead, even if API keys don't
provide the fine-grained control or dynamic capabilities of more advanced mechanisms like
JSON Web Tokens (JWT).

13.1 What are API Keys?

There is no universal standard for API keys. Each product handles them in slightly different
ways. However, one common characteristic remains: an API key is a secret value sent
together with a request, which is used to authenticate the caller.

In the images below, the client's request contains a header, X-Api-Key, with the API key as
value. The API or gateway verifies the key by matching it against a list or database. If the key
is found, the request is authenticated; if not, the API returns an HTTP 401 Unauthorized
status code.

Image: API Key HTTP header

Sometimes, one API key is shared among multiple clients to simplify setup and operation.
However, this approach is only appropriate for low-risk, uncritical applications. If the key is
compromised, the damage can be extensive because all clients using the shared key would be
affected. Therefore, it is best practice to assign each client its own unique API key, ensuring
that a breach only impacts a single client rather than the entire system.

The API Gateway Handbook

 103

Image: Multiple clients with individual API Keys

API keys are stateless. No security context is maintained between calls. Each request is
authenticated independently by verifying the key included in that specific request.

This means that every single call must include the API key, there's no session, cookie, token
renewal, or persistent connection involved.

At first glance, this may seem inefficient. Why include and validate the key every time? Isn’t
that an unnecessary overhead?

In practice, the overhead is minimal. The key adds only a small number of bytes to the
request, and the validation step is lightweight. Most gateways or backend services can
validate keys in microseconds, either against a local list, a database, or a cache.

By sending and validating the key with each call, the API remains fully stateless, which
brings significant architectural benefits:

• Easier horizontal scaling
• Improved reliability (no session storage needed)
• Better fault tolerance across distributed systems

The API Gateway Handbook

 104

Image: Stateless Security, each request must provide the API Key

API keys and the Basic Authentication mechanism, known from HTTP share several
similarities:

• Stateless Operation: Both methods are stateless, meaning a secret is sent with each
request without maintaining a persistent session.

• Need for Transport Encryption: As both are effectively transmitted in plaintext, they
require transport encryption (e.g., TLS) to safeguard the secret against interception.

However, there are important differences stemming from the infrastructure that supports these
methods. Basic Authentication is typically provided by web servers or proxies. API Keys
are managed by API gateways or API management solutions, they do not only authenticate
requests but also enable additional functionality such as analytics, rate limiting, and more
granular security policies based on API Keys.

The API Gateway Handbook

 105

14 Tokens and API Security
Using a combination of username and password for authentication has several well-known
limitations:

1. All-or-nothing access
You either share your full credentials with someone (which is a security risk) or you
don’t. There’s no way to share just part of a password or restrict access to only a subset of
functionality.

2. Tedious recovery
If a password is lost or forgotten, the recovery process is time-consuming and frustrating.

3. Password reuse is risky
Using the same password across multiple services increases the impact of a single breach.

4. Managing unique passwords is hard
Using a different, strong password for every service is more secure, but also difficult to
manage without additional tools.

To mitigate these problems, many people use a password manager. It stores individual
passwords securely and unlocks them with a single master password. If one stored password
is compromised, the others remain safe.

Tokens go even further in solving these challenges for APIs: they act as temporary, scoped
credentials that are easier to manage, revoke, and control without exposing the underlying
username-password combination.

14.1 What is a Token

A helpful way to understand what tokens are and how tokens improve API security is by
imagining how payments work at a festival.

The API Gateway Handbook

 106

Image: Exchanging a token for food at a festival food truck

When you arrive at a large fair or music festival, you typically don't pay cash at every food
truck or vendor. Instead, you go to a central booth and exchange your money for festival
tokens. These tokens are then used throughout the event: at food stands, drink booths, or
game stations.

This system has several benefits:

1. You don’t expose your real payment method.
Carrying around tokens is safer than carrying a credit card. If you lose tokens, the damage
is limited.

2. Tokens can be scoped.
Some tokens may be valid only for food, others only for drinks.

3. Tokens can be limited.
You might buy ten tokens for the day, usable only during that event. If someone finds
your leftover tokens tomorrow, they won’t work.

4. You can delegate access without full trust.
You can give a few tokens to a friend to get food without giving them your entire wallet
or PIN.

The API Gateway Handbook

 107

This same idea applies to APIs. Instead of handing out your password repeatedly, you
exchange it once for a token. That token:

1 Represents your or the client's identity
2 Can be scoped to specific actions (e.g., “read-only access”)
3 Expires after a set time
4 Protects your password by avoiding repeated exposure to many systems

In short, tokens make systems more secure, easier to manage, and more flexible, especially
when working across multiple services, users, or devices.

14.2 How (Bearer) Tokens Work

Most API tokens today are bearer tokens, and they work a lot like those festival tokens.

A bearer token is a credential that grants access to whoever presents it. There’s no extra
identity check. If the token is valid, access is allowed. The system assumes the caller is the
legitimate holder of the token.

The sketch below shows a typical flow using bearer tokens:

The API Gateway Handbook

 108

Image: Issuing and presenting a bearer token

Here’s what’s going on:

Step 1
The client authenticates by sending a username and password to the token server.

Steps 2–3
The token server might retrieve additional info, like roles or groups, from a directory service
such as LDAP.

Step 4
It generates a token and sends it back to the client.

Steps 5–10
The client makes requests to the API, including the token each time for authentication and
authorization.

💡 Sidenote: Why “bearer”?
The term comes from the idea that anyone who bears (holds) the token can use it. This
makes bearer tokens convenient, but also risky: if someone else gets hold of the token, they
can use it too.

The API Gateway Handbook

 109

To stay safe, bearer tokens should always be:

• 🔒 Used only over encrypted TLS connections
• 📦 Stored securely, especially in frontend code and browser apps
• ⏱ Configured with expiration times

Bearer tokens are everywhere for a reason—they’re simple and flexible. But they do rely on
keeping the token out of the wrong hands.

14.3 Types of Tokens

Bearer tokens are the most common type used in APIs, but there are important differences in
how tokens are structured and verified. Not all tokens are created equal. How a token behaves
depends on what it contains and how it is processed.

Bearer vs Non-Bearer Tokens

Most tokens including festival tokens, API keys, and JSON Web Tokens (JWTs) are bearer
tokens. This means that whoever presents the token is granted access. No additional proof of
ownership is required. The system assumes that if a valid token is presented, the client is
authorized.

However, not all tokens rely solely on possession. Some require the client to actively prove
possession of a secret. These are sometimes referred to as proof-of-possession (PoP) tokens.

A common example is a private key held by the client. Instead of sending the key, the client
is challenged by the server. The server encrypts a value using the client’s public key. The
client must then decrypt that value using its private key and return the result. If the decrypted
value matches, the server knows the client holds the correct private key. This process is
known as proof of possession or proof of ownership.

💡 Sidenote: HTTP Bearer Tokens
"Bearer" is also used as an authentication scheme name in the Authorization header of
HTTP requests:

Authorization: Bearer <token>

The API Gateway Handbook

 110

Opaque and Structured Tokens

Another important distinction is whether a token is opaque or structured.

Opaque tokens contain no readable information. They are usually just random strings or
UUIDs, and their meaning cannot be inferred from their content. To verify an opaque token,
the recipient must contact a central token server that stores the relevant metadata, such as the
token’s expiration time, the user it was issued to, and its current validity.

For example, this HTTP header carries an opaque token:

X-Api-Key: C32abQ-5031-42a0-bcea-7c839b5c6062

You can’t tell what this token is for just by looking at it. Verification requires a round-trip to
the original token service.

Image: verification of an opaque token by the token server

The image above illustrates a typical verification flow. The client attaches the token to a
request and sends it to the application (step 3). The application then forwards the token to the
token server that originally issued it (step 4). The token server holds information about the
token’s context, such as the associated user and expiration time. Based on this information, it
determines whether the token is valid. Finally, the result of the verification, along with any
relevant metadata, is returned to the application (step 5).

In contrast, structured tokens, like JWTs are self-contained. They carry information such as
user ID, roles, and expiration time directly within the token payload. A receiving service can
verify the token’s digital signature locally without needing to contact a central token server.

The API Gateway Handbook

 111

Image: Verification of a structured token by the receiver without consulting a token server

In a typical flow, as illustrated above:

1. The client authenticates with the token server.
2. The token server signs the token.
3. The signed token is returned to the client.
4. The client attaches the token to an API request.
5. The receiving application verifies the token’s signature locally and decides whether to

accept or reject the request.

For local verification to work, the receiver of the token must trust its issuer. This trust can be
established in different ways, for example, by sharing a secret key or through a more
sophisticated public-private key infrastructure. We’ll explore how this trust is built, how
tokens are signed and verified, and how these mechanisms work together in the chapter on
JSON Web Tokens (JWTs) later in the book.

The API Gateway Handbook

 112

Trade-offs

The key trade-off between opaque and structured tokens lies in revocation versus efficiency:

• Structured tokens can be verified locally without a network call, making them highly
efficient. But once issued, they’re hard to revoke. That’s why expiration becomes even
more important.

• Opaque tokens require server-side verified, which adds overhead but allows for
centralized revocation and better control.

You may have noticed that we haven’t talked about API Gateways in this chapter yet. In the
next section, we’ll look at how gateways can support token handling and where they fit into
the overall architecture.

The API Gateway Handbook

 113

15 JSON Web Tokens
The predecessors of modern APIs, the XML-based web services, used powerful but extremely
verbose token formats. Tokens adhering to the Security Assertion Markup Language
(SAML) specification had numerous features, but the tokens were notoriously difficult to
read, create, and verify. Perhaps most annoyingly, a typical SAML token could span multiple
pages, making it impossible to pass along in an HTTP GET request due to common length
limits.

Why does that matter? Passing tokens via GET requests is particularly useful during login
processes, where the token server redirects clients to their requested resource. Because XML
tokens were too large for this, developers had to resort to complex workarounds like
JavaScript hacks in the browser to trigger HTTP POST requests instead.

Today, many systems have embraced JSON Web Tokens (JWT), a compact alternative.
JWTs aren’t just shorter and simpler; they're also easily serialized into concise strings. That
makes JWTs perfect for use in URLs, even as simple query parameters:

GET /order/7?token=eyJhbGciOiJIUzI..

Although this is discouraged for security reasons.

Let’s dive deeper into these simple yet powerful tokens.

15.1 What is a JSON Web Token?

JSON Web Tokens (JWT), pronounced "jot", are compact, self-contained, URL-safe bits of
information transferred securely between parties. They are commonly used to authenticate
users in web applications, and are increasingly popular for authenticating API clients as well.

The following HTTP request includes a JWT in the Authorization header using the Bearer
token scheme:

GET /customers/ HTTP/1.1
Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ
pc3MiOiJodHRwczovL2FjY291bnRzLnByZWRpYzguZGUiLCJzdWIiOiIxMjM0N
TY3ODkwIiwibmFtZSI6IlRvYmlhcyBQb2xsZXkiLCJpYXQiOjE3NTAxNzA5OTZ
9.RNCFqlC5Dt3-jNE68pmFe9yk3JsUWSp43pV4o2CQhLE

(The highlighted part is just one very long line.)

After verifying the token’s authenticity and checking trust in the token’s issuer, a web server
might choose to allow the HTTP request to proceed (and return the list of customers to the
caller).

The API Gateway Handbook

 114

🔎 Quick Tip for JWT Experts
You can recognize a JWT string by:

• The presence of two or four dots (.) separating the sections
• The prefix ey at the beginning, which roughly corresponds to {" when Base64URL-

decoded (i.e., the start of a JSON object)

15.1.1 Two Kinds of JWTs

In many API systems, it’s important to pass around information about the caller, such as their
identity or access level, without having to query a central identity service for every request.
JSON Web Tokens make this possible by embedding such information directly in the token
itself.

Depending on whether the data needs to be visible or kept confidential, JWTs come in two
flavors: JWS (JSON Web Signature) and JWE (JSON Web Encryption).

With JWS, the token's payload is only signed, not encrypted. This means that any recipient
can read the contents, but cannot alter them without breaking the signature. In contrast, JWE
encrypts the payload, so its content remains confidential and can only be decrypted by trusted
recipients.

In practice, most systems use JWS tokens, because the payload typically is not considered
highly sensitive in the context of the application, such as a username or access role like
["read"]. The payload does not need to be hidden from the API client. The important part
here is that the information is trusted and tamper-proof, not necessarily secret.

15.2 Decoding JWTs

JWTs are used most often in their compact serialization format, especially when
authenticating towards an API.

A JWS might look like this:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJodHRwczovL2FjY
291bnRzLnByZWRpYzguZGUiLCJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IlR
vYmlhcyBQb2xsZXkiLCJpYXQiOjE3NTAxNzA5OTZ9.RNCFqlC5Dt3-jNE68pmF
e9yk3JsUWSp43pV4o2CQhLE

At first glance, it might seem illegible. But don't worry, JWTs contain dots (.) that split the
tokens into parts. A JWS always consists of three parts, while a JWE always consists of five
parts. In edge cases, some parts may be empty, but we can safely ignore them for now.

Each individual part is encoded using the Base64URL scheme.

The API Gateway Handbook

 115

15.2.1 Base64URL-Encoding

Base64URL Encoding is a variant of Base64 encoding that uses URL-safe characters. This
means that the encoded data can be safely included in URLs without needing additional
encoding. Base64URL encoding is like Base64, but replaces the + and / characters with - and
_, respectively, and omits padding characters (=).

In the context of JWTs, Base64URL ensures that, while the payload (and e.g. the username,
for that matter) might contain special characters like äöü:+/, the JWT’s serialization does not.

15.2.2 JSON Web Signature

JSON Web Signature (JWS) is a compact, URL-safe way to ensure the integrity and
authenticity of its payload. It consists of three parts:

<Header>.<Payload>.<Signature>

Let’s break those down.

Header

The header typically includes information about the type of token and the algorithm used to
sign it. The header of the JWS shown above is:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9

which decodes to (pretty printed here for readability):

{
 "alg":"HS256",
 "typ":"JWT"
}

This example header only contains standardized parameters:

• "typ": "JWT" tells us this is a JSON Web Token. This field is optional, though —
the structure itself already gives that away.

• "alg": "HS256" refers to the signing algorithm. It is defined in the JSON Web
Algorithms (JWA) standard.

Payload

The payload contains the claims, which are statements about an entity (often the user or client
presenting the token) and additional data. The payload of the JWS shown above is:

eyJpc3MiOiJodHRwczovL2FjY291bnRzLnByZWRpYzguZGUiLCJzdWIiOiIxMj
M0NTY3ODkwIiwibmFtZSI6IlRvYmlhcyBQb2xsZXkiLCJpYXQiOjE3NTAxNzA5
OTZ9

The API Gateway Handbook

 116

Decoded, it looks like this:

{
 "iss": "https://accounts.predic8.de",
 "sub": "1234567890",
 "name": "Tobias Polley",
 "iat": 1750170996
}

We will discuss the claims shown here in section 15.2.4.

Signature

The final part is the signature. It’s created by taking the header and payload, encoding them,
and then signing them using the specified algorithm and a secret key. The result is a binary
signature that ensures the token hasn’t been altered.

If anyone tries to change the header or payload, the signature won’t match anymore: The
token will be rejected.

15.2.3 JSON Web Encryption

While JSON Web Signature (JWS) ensures that a token hasn’t been tampered with, JSON
Web Encryption (JWE) goes a step further . It hides the content entirely. If JWS is like
sealing a letter with wax, JWE is like locking it in a safe.

Here’s what a real JWE might look like:

eyJhbGciOiJSU0EtT0FFUC01MTIiLCJlbmMiOiJBMjU2R0NNIiwidHlwIjoiSl
dUIn0.eRmAQpf5PlWWITJlwfDL1Zi1LfF7R-Ut_smjDs-UuqAUqg3RMXu28nEV
utyJn1f1GHwIr4m9enmvIm4GWH84cxL7MNnhqsHXOsqMeMP1w8YMNQ9UC7SRas
p7f6Xr9cKpEneeclYEUrLUbdc-tm5UjEso1CCy1DvQaCsk2VgNU7aS1971ACYa
SAqmpkUc4bNQ2BP8euPkZUicYRg6pReqgsTb48nTA7ihJQH_uKm3Ps8NvpNXYA
TmPZlSyipLN46OvaIYgQeUzpY517juRt6Lm1xWqYNuOpJrU1dGwQH7ZPjMRT6R
fjEKz-PP8ij86tq1BRFWXxQfXj8lfVfykkACKA.zbG6eOT8NzvZTFWf.k_q3dt
GDSb3_PUsftJrhwQHhTXO1wmDymN4sJbfJ0PEMnoAaKGdTrTES2_DkQecTg9kU
76gWJOXcXo3gVM-AiaZayX2CIi1PPM042o4.Gnb0R__E_nIkkux9v26QWA

JWEs consists of five parts, separated by dots:

<Header>.<Encrypted Key>.<Initialization
 Vector>.<Ciphertext>.<Authentication Tag>

Again, let’s break down what each part does:

• Header: Contains metadata about the encryption, such as the algorithm used.
Example (decoded):

{"alg":"RSA-OAEP-512","enc":"A256GCM","typ":"JWT"}

The API Gateway Handbook

 117

• Encrypted Key: A symmetric key, encrypted with the recipient’s public key. This key
is used to decrypt the actual data.

• Initialization Vector (IV): A random value that ensures the same plaintext will
encrypt to different ciphertexts each time.

• Ciphertext: The encrypted payload — this is the part you can’t read without the key.
• Authentication Tag: A value produced by the encryption process. It ensures the

integrity of the encrypted content. If anything was tampered with, decryption will fail.

The last four parts except the header are binary data. All parts are Base64URL-encoded to
make them safe for transport in URLs and HTTP headers. To decrypt the token, you’d need
the appropriate private key — which isn’t included in this book.

15.2.4 Interpreting the Payload

The meaning of the claims is a contract between the party issuing the tokens and the parties
verifying the tokens. Both parties must have a common understanding what a certain field
(like sub) means. Otherwise, things can get confusing really fast.

The JWT specification defines a few standard claim names with well-known semantics.
Here are some common ones:

• iss (issuer) identifies the Token Server.
• sub (subject) identifies the entity the token refers to. It usually refers the user account

or client the token belongs to. The exact meaning of the field value is not defined,
although the value should be locally unique. It often refers to an employee or
customer number or their email address: All are unique values within a given
organization.

• name is a custom claim and not standardized.
• iat (issued at) is the timestamp when the token was issued. It’s expressed as a so

called Unix timestamp. A unix timestamp counts elapsed seconds since January 1,
1970 at 00:00 UTC, excluding leap seconds. A value of 1750170996 therefore refers
to June 17, 2025 at 14:36 UTC.

15.3 How to Protect an API with JWT

To secure an API using JWTs, whether in your server implementation or at the API Gateway,
you need to inspect every incoming HTTP request for a valid token. Only after verifying
the token you should allow the request to proceed. The goal is simple: make sure the request
is authentic, untampered, and authorized.

The API Gateway Handbook

 118

Here’s how it works:

1. Check for a JWT in the request — typically in the Authorization header as a
Bearer token.

2. Verify the signature using a key you already have and trust (either a shared secret or
a public key).

3. Reject the request if the signature is invalid.
4. Continue processing if the signature is valid.

!"#$% The signature check is what makes the token trustworthy. It proves that the token was
issued by someone you trust and hasn’t been altered in transit.

Depending on your exact use case, you might want to further limit the JWTs you accept by
adding additional claim checks.

15.3.1 Adding a Time Restriction

Imagine an attacker managed to exploit a vulnerability in your API version 1 and got hold of a
valid JWT from another user. Later, you upgrade to version 2 and patch the security hole.
Problem solved? Not quite.

If that stolen token is still valid, the attacker might continue using it — even though the
vulnerability is gone. Sneaky, right?

To prevent this, you need to limit how long a JWT is valid. Here’s how:

1. Limit the Validity Period
Keep the token’s lifespan as short as your use case allows. In many cases, 5 minutes is
enough. For example, a token might be valid from:

2025-03-14 09:30 UTC → 2025-03-14 09:35 UTC

In JWTs, you express this using Unix timestamps with the nbf (Not Before) and exp
(Expiration) claims:

{ ..., "nbf": 1741941000, "exp": 1741941300 }

2. Check the Validity Period
When your API receives a token, it should check whether the current time falls within
the nbf and exp range. If it doesn’t, reject the request.

You might want to allow a little wiggle room (say, up to 30 seconds) to account for
network latency. A token might have been valid when sent but expired by the time it
arrived.

The API Gateway Handbook

 119

3. Ensure Accurate Timekeeping
Your server needs to know the current time to verify tokens correctly. That means your
system clock must be accurate. Use NTP (Network Time Protocol) or a similar service to
keep it in sync. Of course, NTP itself might have security issues.

A broken clock is only right twice a day, and that's not good enough for API security!

15.3.2 Adding a Spatial Restriction

When you're protecting multiple APIs with JWTs issued by the same authority, it’s smart to
add extra security checks. Imagine you’re running two servers:

• https://finance.predic8.de/ handles sensitive financial data
• https://lunch-menu.predic8.de/ serves less critical information

(unless someone’s really hungry)

Naturally, you’ll invest more in securing the Finance API. But here’s the catch: an attacker
might target the weaker link. If they manage to get a valid token from the Lunch Menu API,
they could try to use it to access the Finance API.

That’s the catch.

To prevent this kind of cross-API token abuse, you can enforce a spatial restriction using
the aud (audience) claim in JWTs.

Here's how:

1. Issue Tokens for a Specific API

The token issuer must include the aud claim in the payload to indicate which API the
token is meant for. For example:

{ ..., "aud": "lunch-menu" }

2. Verify the aud Claim

Each API must check the aud claim and reject tokens not intended for it. So, the Finance
API would reject any token with "aud": "lunch-menu".

To access both APIs, a caller would need to acquire two tokens: one for the Finance API and
one for the Lunch Menu API.

If you strictly require tokens valid for more than one API, you might consider issuing tokens
with "aud": ["finance", "lunch-menu"]. However, be aware of the security implications in this
case! If you have more APIs, e.g., "wiki.predic8.de", "tickets.predic8.de", and
"crm.predic8.de", using separate tokens still provides more security, of course.

The API Gateway Handbook

 120

16 OAuth2 and OpenID Connect
OAuth2 and OpenID Connect are the backbone of modern authentication and authorization on
the internet. They’re the reason you can log into a new app using your Google or Microsoft
account without creating yet another password.

Both standards help delegate the responsibility of managing user identities and access rights
to a central authority, so your app doesn’t have to reinvent the wheel.

Let’s explore how they work, how they differ, and why they matter.

16.1 OAuth2

Back in chapter 14.2, we talked about using tokens at a festival to buy food. Let’s stretch that
analogy just a little further. It still holds up.

Have you ever stood in front of a food truck, craving fries, only to realize you need to pay
with tokens instead of cash? The question becomes:

• Where do you get the tokens?
• How do you get them?
• Do you pay with cash or credit card?

This is exactly what OAuth2 standardizes: the process of acquiring a token.

Image: Acquiring a token using OAuth2 and using it for API access

OAuth2 focuses on how the token gets back to the client (step 2). But it doesn’t fully specify
what the client must send to the authorization server to authenticate itself (1). In fact, OAuth2
leaves a lot of practical questions open:

• What does the token even look like?
• How should it be verified?
• Is the client a browser? Or an application? Is there a user involved at all?

The API Gateway Handbook

 121

16.2 Securing APIs with OAuth2

OAuth2 supports a wide range of scenarios, from web applications to mobile apps and even
physical devices. With all its different flows, choosing the right one can feel intimidating at
first. But if we narrow the focus to APIs, the picture becomes simpler. For API access, the
most relevant flows are:

• Client Credential Flow
• Authorization Code Flow
• Authorization Code Flow with PKCE

The right choice depends on who is calling the API. To make it easier, we can group things
into two principal use cases: applications acting on their own behalf, and applications acting
on behalf of a user.

Applications acting alone

API stands for Application Programming Interface. The literal meaning is an interface
between applications. Not a GUI (graphical user interface) where a human interacts with
software. Here, applications talk directly to other applications without a user being involved.

For example, a logistics application might notify an ERP system like SAP that a delivery has
been completed. Since no user is directly involved, we describe this scenario as the client
acting on its own behalf.

In the sketch below, the client application first authenticates with an authorization server (step
1). After successful authentication, it receives a token, represented as the yellow coin in the
sketch (step 2). The client can then present this token when making the API call (steps 3 and
4).

Image: API Access on behalf of the client

Since there is no user typing in a password, the client must prove its identity to the
authorization server in another way. This can be achieved by storing a secret (similar to a
password) or by using a certificate with a private key that is kept securely on the client.

The API Gateway Handbook

 122

Applications acting on behalf of the User

In this scenario, an application makes API calls as a delegate of the user. A common example
is a web application such as an email client that communicates with a backend service. The
client needs to prove not only its own identity, but also that it is acting on behalf of the
logged-in user. This isn’t limited to web apps. Standalone desktop or mobile applications can
do the same.

Here’s how it works in practice: after opening a web application in the browser, the user is
redirected to an authorization server (for example, Microsoft Entra). There, the user
authenticates, typically with a password and possibly a second factor. Once that succeeds, the
application requests a token from the authorization server. That token is then used to access
the API, proving that the client is authorized to act on the user’s behalf.

Image: A user authenticates through a desktop app, which then accesses the API on their
behalf.

That’s the rough overview of the two principal OAuth2 use cases for APIs. Next, we’ll tackle
the big questions, starting with: How does the API know who is calling? OAuth2 itself doesn’t
answer that. For identity, we need another standard: OpenID Connect.

The API Gateway Handbook

 123

16.3 OpenID Connect

OpenID Connect (OIDC) is a family of standards built on top of OAuth2. While OAuth2
focuses on delegating authorization and granting access to resources, OIDC adds
authentication. The core specification, OpenID Connect Core, helps answer questions like:

• How does the API know who is calling it?
• How can we retrieve the caller’s username, email address, or phone number (if available)?

OIDC introduces several supporting standards as well. The most important one is OpenID
Connect Discovery: It simplifies configuration by allowing clients to automatically find
endpoints and capabilities of the Authorization Server.

Other OIDC specifications exist, but most are either highly specialized or rarely used in
typical API scenarios, so we won’t dive into them here.

Tokens in OIDC: ID vs Access

OIDC references the JWT standard, which might lead you to think: “So the tokens are JWTs,
right?”. Well, … maybe!

OIDC distinguishes between two types of tokens:

• ID Tokens: These are JWTs and are used to identify the user. They contain claims
like the caller’s name, email, and authentication time.

• Access Tokens: These come from OAuth2 and are used to authorize access to APIs.
They may or may not be JWTs, depending on the implementation and configuration.

In practice, the line between these tokens can get blurry, especially when developers try to use
ID tokens to access APIs (which they in theory shouldn’t).

Before things get too tangled, let’s take a step back and look at how OAuth2, OIDC, and
JWTs work together in a typical API authentication flow.

The API Gateway Handbook

 124

16.4 In Practice

Let’s walk through a real-world example where a backend service takes the role of the Client
in an OAuth2 and OpenID Connect setup.

Don’t worry about the complexity. This section gives you a detailed description of what is
going on under the hood. The good news is, that even though the communication flow is
really complicated, OIDC makes the configuration of API Gateways really simple!

Image: A Demo Case of OAuth2, OpenID Connect (Core and Discovery) and Best Practice

In the image, a lot is going on. So, let’s break it down step by step. On the left, we describe
what’s happening (H). On the right, we explain which parts are standardized (S), and where
assumptions or implementation details come into play.

The API Gateway Handbook

 125

H: What Happens S: What’s Standardized
Step 1-4: When the API backend starts, it
connects to the Authorization Server over
HTTPS. It discovers the URL where the
server’s public keys can be downloaded.
The backend downloads and caches those
keys.

&' Standardized by OIDC Discovery

Step 5-6: The user opens his browser and
navigates to the Client (e.g.,
https://clients.predic8.de/customers).

(Not standardized. This is just how users
interact with web apps.

Step 7-12: Since the user isn’t logged in, the
Client redirects it to the Authorization
Server. (7+8) The server displays a login
dialog. (9) After login, the user may see a
consent dialog explaining what personal
data (e.g., username, email) will be shared
with the Client. The user accepts (10) and is
redirected back (11+12).

&' Redirects: OAuth2 + OIDC Core
(Login method (password, passkey, multi
factor authentication (MFA)?): not
standardized
⚠ Consent dialog: part of OIDC Core, but
often configured by the enterprise admin to
be hidden (that means “auto accept”)

Step 13-14: The Client retrieves an access
token and an ID token from the
Authorization Server. Let’s assume the
access token is configured to be a JWT.
Now the Client knows the user is
authenticated.

&' 100% OAuth2, extended by OIDC
Core
⚠ Access Token Format is an
implementation detail. It’s often
configurable, JWT is a common choice.

Step 15-16: The Client calls the API on
behalf of the user (e.g., GET /customers)
and attaches the access token in the
Authorization: Bearer ... HTTP
header. The API verifies the token using the
public key retrieved in Step 0.

&' The HTTP header format is standardized
by the OAuth2 Bearer Token spec
&' If the access token is a JWT, verification
is also standardized (e.g., using the JWT
spec and public key verification)
ⓘ GET /customers is just an example
and is application-specific

This flow illustrates how OAuth2, OpenID Connect, and JWTs work together in practice,
while also showing where the standards end and implementation details begin.

!"#$% Sidenote: Delegation vs. Authentication
OAuth2 is primarily about delegation. It lets a user grant limited access to their resources
without sharing credentials. OpenID Connect builds on OAuth2 to add authentication,
meaning it can also tell you who the user is. Think of OAuth2 as the valet key to your car, and
OpenID Connect as the valet also showing you their ID badge.

The API Gateway Handbook

 126

16.5 Reasons to use OAuth2 and OpenID Connect

Why go through the trouble of setting up OAuth2 and OpenID Connect? Here are a few
compelling reasons:

• Separation of concerns
OAuth2 separates authentication and authorization from the actual API implementation.
Your API doesn’t need to know how users log in. It just checks the token.

• Centralized control
A central Authorization Server is easier to maintain, upgrade, and audit. New policies can
be rolled out in one place and take effect across all clients and APIs.

• Consistent enforcement
All APIs, whether you have 10 or 1000, can use a common authorization mechanism (e.g.,
JWTs as access tokens). This makes it easy to define policies like:
“Every HTTP request must carry either no token or a valid JWT.”

• Scalability
As your system grows, you don’t want every API to manage its own user database.
OAuth2 and OIDC allow you to scale authentication and authorization independently of
your services.

• Interoperability
OAuth2 and OIDC are widely adopted standards. They’re supported by major identity
providers (Google, Microsoft, Okta, etc.) and integrate well with third-party tools and
libraries.

• Security best practices
Tokens should be short-lived and scoped. This reduces the blast radius of a compromised
credential and supports the principle of least privilege.

• User experience
With OIDC, users can log in once and access multiple services without re-authenticating.
This enables single sign-on (SSO) and smoother user journeys.

• Auditability and compliance
Centralized login and consent flows make it easier to track who accessed what, when, and
how. This is very useful for compliance and incident response.

• Flexibility for different clients
OAuth2 supports different flows for different types of clients: web apps, mobile apps,
backend services, and even IoT devices.

16.6 Setting up a JWT Verifier with OIDC

OAuth2 and OpenID Connect (OIDC) might look complex from the outside, but the good
news is: setting up JWT verification in an API Gateway is surprisingly straightforward.

When securing APIs with JSON Web Tokens (JWTs), hardcoding public keys or token
verification URLs is brittle and hard to maintain. OIDC Discovery introduces a mechanism
that automates all of this dynamically.

The API Gateway Handbook

 127

All you need to configure is the base URL of your Authorization Server. That’s it. The
gateway or verifier takes care of the rest: OIDC Discovery defines that appending /.well-
known/openid-configuration to that base URL to be the URL of the discovery
document.

The illustration below shows the discovery flow:

Image: How an API retrieves public keys and configuration from an OpenID Auth Server

The API Gateway Handbook

 128

Let’s walk through the steps:

1. Initial Discovery Request

The verifier (usually part of the API Gateway or backend) starts by querying the OpenID
Provider’s standard discovery endpoint:

https://<auth_server_base_url>/.well-known/openid-
configuration

This is a fixed URL pattern. The <auth_server_base_url> is the base URL of your
Authorization Server, such as Keycloak, Auth0, or Google Identity.

2. Fetching the Discovery Document

The Authorization Server responds with a JSON document describing its capabilities and
important endpoint URLs. For example:

{
 "issuer": "https://accounts.google.com",
 "authorization_endpoint":
 "https://accounts.google.com/o/oauth2/v2/auth",
 "token_endpoint": "https://oauth2.googleapis.com/token",
 "jwks_uri": "https://www.googleapis.com/oauth2/v3/certs",
 ...
}

Of particular interest is the jwks_uri field, that’s where we’ll find the keys.

3. Requesting the JWKS (Public Keys)

The verifier downloads the JSON Web Key Set (JWKS) from the jwks_uri. Here’s an
example:

{
 "keys": [
 {
 "kid": "882503a5fd56e9f734dfba5c50d7bf48db284ae9",
 "kty": "RSA",
 "alg": "RS256",
 "use": "sig",
 "n": "woRUr445_ODXrFeynz5L208aJkABOKQHEzbfGM_V1...",
 "e": "AQAB"
 }]
}

The API Gateway Handbook

 129

The verifier typically caches these keys.

Because this process happens over HTTPS and the identity provider is authenticated via TLS,
the verifier can safely trust the keys it receives actually belong to the Authorization Server.

This dynamic setup is a best practice when working with modern identity providers like
Keycloak, Auth0, Azure AD, or Google Identity and it saves you from manual key
management headaches.

⚠ Note: Reloading of Keys
How often the JWKS is reloaded depends on the implementation. Some gateways only fetch it
at startup. If the keys rotate, the verifier might continue using stale keys unless periodic
background reloading or manual refresh is supported.

The API Gateway Handbook

 130

16.7 What is JWKS?

The JSON Web Key Set (JWKS) document is a JSON structure that lists public keys used to
verify JWTs. Each JWK includes:

• kty: Key type (e.g. RSA or EC)
• alg: Algorithm (e.g. RS256)
• kid: Key ID used to match with the JWT header
• n, e: RSA public key values, if it is an RSA key

The API or API Gateway receives the JWKS via a trusted outbound TLS connection from the
Authorization Server. Thereby, trust in them is established.

16.8 Verification of JWT Signature and Claims

The API or API Gateway receives the JWT on the other hand via an untrusted inbound TLS
connection from anyone. Trust in the JWT has to be established by verifying it.

The JWTs often include a kid (Key ID) field in their header like so:

{
 "alg": "RS256",
 "typ": "JWT",
 "kid": "882503a5fd56e9f734dfba5c50d7bf48db284ae9"
}

After receiving a JWT, the verifier reads the token’s header to find the kid (Key ID) and
selects the corresponding public key from the JWKS document. With the correct key in hand,
the verifier checks the signature of the token. If the signature is valid, it proceeds to examine
the claims inside the JWT, such as:

{
 "iss": "https://accounts.google.com",
 "aud": "my-api-client-id",
 "exp": 1716549780,
 "sub": "1234567890"
}

The verifier’s checks must include:

• iss (issuer) matches the expected identity provider
• aud (audience) matches your API’s configured client ID
• nbf (not before) is in the past
• exp (expiration) is in the future and hasn’t yet passed

Only when the signature is correct and the claims are valid is the request allowed to proceed.

The API Gateway Handbook

 131

💡 Sidenote: Expired or mismatched claims
Signature verification might succeed, but if any claims don’t match, like an expired token
(exp), the wrong audience (aud), or an unexpected issuer (iss), the token is still considered
invalid. In such cases, most gateways will return a 401 Unauthorized or 403 Forbidden
response depending on the context.

The API Gateway Handbook

 132

17 Rate Limiting
API calls happen fast, so fast that you hardly notice how many are zipping through until it’s
too late. Take this example Python script. It creates a million products in the Fruitshop:

import requests

for i in range(1000000):
 requests.post("https://api.predic8.de/shop/v2/products/",
 json={"name": f"Fruit-{i}", "price": 1.99}
)

Tiny scripts like this can quickly overwhelm an API. You’re welcome to run this script
against the Fruitshop API and see what happens.

Why would anyone hammer an API like that? There are several reasons:

• Brute-force attacks
Continuously guessing passwords, API keys, or tokens.

• Data scraping
Grabbing an entire database by repeatedly sending queries.

• Heavy legitimate usage
Sometimes a customer genuinely needs heavy API use.

• Resellers
Users who build their business around your APIs.

• Developer tests:
A harmless coworker or student trying out your API.

Whatever the reason, the remedy is the same: set limits on how many requests clients can
send or slow them down so your system can breathe. Rate limiting protects your backend,
ensures fair usage, and prevents accidental overload.

Next, we’ll dive into how gateways enforce these limits, track usage, and deliver helpful
errors when clients exceed their allowance.

The API Gateway Handbook

 133

Hitting the Limit

So, what happens when you push an API a little too hard and cross its rate limit? The server
enforces its rules. Here’s the response a client received after sending more than 500 requests
in just one hour:

HTTP/1.1 429
Content-Type: application/problem+json
RateLimit-Policy: "unauthenticated";q=500;w=3600
RateLimit: "unauthenticated";r=0;t=2351

{
 "title": "Rate limit exceeded.",
 "type": " https://iana.org/assignments/http-problem-
types#quota-exceeded",
 "violated-policies": ["unauthenticated"]
}

The 429 Too Many Requests status code signals that the client has crossed the threshold.
The RateLimit-* headers are especially useful because they give the client clear guidance on
what to do next. Whether to back off or wait before trying again.

Here’s what those headers mean:

Header Field Value Description
RateLimit

"unauthenticated";
r=35;t=129

35 calls remain within the next 129
seconds

RateLimit-Policy

"unauthenticated";
q=500;w=3600

Limit is 500 requests every 3600
seconds (1 hour)

💡 Sidenote: What about X-RateLimit?
Many APIs still use older, non-standard headers such as:

X-RateLimit-Limit: 5
X-RateLimit-Remaining: 0
X-RateLimit-Reset: 48

Supporting both standard RateLimit-* and legacy X-RateLimit-* headers improves
compatibility, especially when integrating with older APIs.

The API Gateway Handbook

 134

How does Rate Limiting work?

At first glance, rate limiting might sound simple. Just count the number of requests, right? But
in distributed systems, things get complicated quickly.

Typically, you want to count requests per unique client. If clients are authenticated, that’s
straightforward: you can track calls by username, API key, or token.

Client Number of Calls
Fredo

13

Sophia

7

Marc 93

The challenge comes with anonymous clients. In those cases, you often end up counting
requests by IP address. That works to some degree, but it’s imperfect: IPs can change when
users reconnect, and multiple users inside the same organization might appear under a single
shared IP.

Client Number of Calls
192.168.2.99

324

10.7.75.102

10

10.2.99.3 25

Despite its shortcomings, IP-based counting is still one of the most common fallbacks when
no other client identifier is available.

Flexible Counting

When requests include API keys, tokens, or other identifying data, you can use that
information for counting instead of relying only on IP addresses. Many API Gateways even
let you configure custom expressions with JSONPath, XPath, or similar languages.

Here are a few examples:

Expression Descrption
header['Authentication'] Count requests by authenticated user (HTTP

header).

jwt.claims['sub'] Count by JWT subject (user ID).

request.path Count by request path. User or id doesn't matter.

The API Gateway Handbook

 135

$.product.id Count by product ID in the JSON payload using
JSONPath.

This flexibility allows you to apply rate limits in very specific ways. For instance, you might
set tighter limits on sensitive endpoints such as /login or /change-password, while keeping
more relaxed limits elsewhere.

Combined Aggregation

Counting can also be based on a combination of multiple values. For example:

jwt.claims['sub'] + method + request.path

This expression combines the user (from the JWT sub claim), the HTTP method, and the
request path. Each unique combination is counted separately.

That means a GET and a POST to the same endpoint are treated as two different calls. Similarly,
if a user accesses multiple paths, each path maintains its own rate limit.

This fine-grained approach gives you more flexibility: users can interact with different
endpoints without being unfairly throttled, while still protecting your system from cases
where one user repeatedly calls the same method on the same path.

The API Gateway Handbook

 136

Counting with distributed API Gateways

Imagine trying to count every car entering a city. You could place a student with a clipboard
at each road. At the end of the day, you add up the tallies, and everything looks fine. But real-
time counting? That’s much harder. Each student would need to constantly sync their
clipboard with a central counter.

Image: Counting cars entering the city

Distributed API Gateways face the same challenge. When multiple gateways serve requests,
rate limiting requires synchronization. Without it, clients could sidestep the limits simply by
routing calls through different gateways.

To solve this, gateways often rely on shared counters:

• Databases (such as PostgreSQL) for reliable, persistent counting.
• Caches (like Redis or Memcached) for fast, in-memory counting.

The API Gateway Handbook

 137

Image: Shared counters for rate limiting

This approach ensures global rate limits across all gateways, but it comes at a cost: added
complexity and operational overhead.

Distributed Counting without shared State

Some load balancers use hash-based routing. By hashing an identifier such as the client’s IP
address or token, they can ensure that a client is always routed to the same gateway instance.
This way, each gateway can enforce its own limits independently, without the need for shared
counters or storage.

Trick: Multiple Gateways without shared Counters
Another workaround is simply being generous. Instead of enforcing a total limit (e.g., 1000
requests/hour shared across two gateways), let each gateway enforce its own limit (like 750 or
even 1000). This eliminates the need for shared state.

If you do this, avoid returning RateLimit-* headers, since their values would differ between
gateway instances, potentially confusing clients.

Resources

RateLimit header fields for HTTP, Roberto Polli,
Alex Martínez Ruiz, Darrel Miller, 18 March 2025
https://datatracker.ietf.org/doc/draft-ietf-httpapi-ratelimit-headers/

The API Gateway Handbook

 138

18 Data Masking
The General Data Protection Regulation (GDPR) defines how organizations can collect,
process, store, and share personal data of individuals in the European Union. These rules
apply to APIs as well. Even if a gateway doesn’t permanently store data, it still processes it,
and that can introduce privacy risks.

Logging is a common example. API gateways often record requests and responses for
auditing, debugging, or monitoring. But those logs may unintentionally contain personal data,
especially with RESTful APIs.

Take this request:

GET /employees/34234

If logging is enabled, the employee ID will show up in the log. Under GDPR, this ID counts
as personal data. Just like names, addresses, or phone numbers, and therefore requires
protection.

Data masking addresses this problem by obscuring or anonymizing sensitive values before
they are written to logs. For example:

127.0.0.1 - - [07/05/2025:12:00] "GET /employees/XXXXX

This keeps the log useful for operations and debugging while protecting the individual’s
identity.

Masking can be applied not just to path parameters, but also to query strings, headers, and
even request or response bodies.

The API Gateway Handbook

 139

19 Security for Legacy Protocols (SOAP)
Some technologies like XML-based Web Services just refuse to die. Loved by few,
maintained by many, SOAP and other verbose legacy protocols still lurk in the infrastructure
of large organizations.

Exposing these services through modern API Gateways can be a challenge. Compared to
JSON-based APIs, SOAP brings extra baggage: complex message structures, bloated
payloads, and unique XML-specific risks like XML bombs or XPath injection.

To address this, some API Gateways offer specialized support for securing legacy protocols,
including:

• WSDL and XML Schema validation
• WS-Security enforcement
• XML Signature verification and XML Encryption
• Content-based filtering or transformation

This kind of support allows organizations to modernize gradually. Integrating old and new
systems without compromising on security.

19.1 WSDL Validation

For SOAP-based services, the Web Services Description Language (WSDL) acts as the
contract between the client and the service. It defines which operations (remote functions) are
available and what the expected messages look like. Similar to how OpenAPI describes REST
APIs, WSDL outlines what a SOAP service accepts and returns.

API gateways can use WSDL documents to validate SOAP messages, ensuring they follow
the expected structure and constraints. Validation checks that required elements are present,
appear in the correct order, and contain values that match the defined types.

WSDL validation relies on XML Schema Definitions (XSDs), which can be embedded
directly in the WSDL or referenced externally. One advantage of WSDL over plain XSD
validation is that it ties each operation to a specific XML element. This allows the gateway to
validate messages precisely based on the operation being called.

In practice, WSDL validation is usually applied by attaching a validation policy to a service
proxy. A service proxy in this context works like an API definition in a gateway, just for
SOAP instead of REST.

The stricter the WSDL and its associated schemas are, the more powerful validation becomes,
not only for message structure but also as a layer of defense that improves security.

The API Gateway Handbook

 140

20 Cross Origin Resource Sharing (CORS)
JavaScript-based API clients are often part of modern web pages. Single-page applications
(SPAs), in particular, load data dynamically and frequently call headless backend systems
using APIs. But browsers enforce a strict security mechanism called the Same-Origin Policy.
This policy blocks scripts from one origin from accessing resources hosted on another. It’s a
core protection against cross-site scripting attacks. And yes, it applies to APIs too.

Cross-Origin Resource Sharing (CORS) provides a controlled way to relax this restriction.
It defines how browsers and servers can safely interact across different origins, under clearly
defined rules.

CORS is only relevant when APIs are called from a web page running inside a browser.
Server-to-server communication and native mobile apps are not affected.

20.1 Cross-Site Request Forgery (CSRF) Attacks

CSRF attacks belong to a broader category known as confused deputy attacks. In this type
of attack, a less-privileged actor tricks a more-privileged one into performing an action on
their behalf.

Think of a thief convincing a company employee to open a locked door by claiming, “I work
here too, but I forgot my key card.” The employee unknowingly becomes an accomplice,
doing something they’re authorized to do, but for the wrong person.

The API Gateway Handbook

 141

Now apply this idea to web sessions as illustrated in the image below.

Let’s say a user logs into her bank account but forgets to log out, leaving a valid session
cookie in the browser. Later, while casually browsing the web, she visits a malicious website
(1). This site includes hidden JavaScript (2) that silently sends a forged request to the bank’s
API (3), instructing it to transfer money to the attacker’s account.

The user’s browser, unaware of the trick, automatically attaches the valid session cookie to
the request (4). If the bank’s session is still active, it processes the request and transfers the
money (5).

Image: CSRF attack against an API

This is a classic CSRF attack, where a victim’s browser is abused to perform actions, they
didn’t intend, using their valid credentials.

Since around 2020, modern browsers have tightened security by enforcing the Same-Origin
Policy. These protections prevent cookies from being sent in cross-origin requests unless
explicitly allowed, significantly reducing the risk of CSRF in modern web apps.

💡 Sidenote: CSRF and bearer tokens
Cross-Site Request Forgery (CSRF) mainly affects session-based authentication where
browsers automatically attach cookies. When APIs use bearer tokens in headers (such as
OAuth2 access tokens or JWTs), the risk of CSRF is greatly reduced.

The API Gateway Handbook

 142

20.2 How the Same-Origin Policy prohibits API Calls?

Modern browsers protect users from CSRF attacks by enforcing the Same-Origin Policy.
This policy restricts scripts running in the browser from making HTTP requests to a different
origin than the one that served the page.

An origin is defined by the combination of protocol, hostname, and port.

While this is great for security, it can get in the way of legitimate use cases, like calling APIs
from single-page applications (SPAs).

Here’s a typical scenario:

1. A web page is loaded from www.predic8.de (steps 1 and 2).
2. The JavaScript on that page attempts to call an API hosted at api.predic8.de (steps

3 and 4).
3. Since the domain differs, even slightly (due to the subdomain), the browser sees this

as a cross-origin request and blocks the POST request.

Image: Browser enforcing Same-Origin policy on a POST request to a different server.

That’s where Cross-Origin Resource Sharing comes in. CORS provides a way for servers to
declare which cross-origin requests are allowed, and under what conditions. The browser
enforces the policy, but CORS opens the door, safely.

💡 Sidenote: Policy enforcement at the browser
The Same-Origin Policy is enforced by the browser, not the server. Without it, malicious
sites could reuse authentication cookies or credentials to access private APIs behind the
scenes.

The API Gateway Handbook

 143

20.3 How does CORS work?

CORS lets a server explicitly say, “It’s okay for this resource to be used by code from origin
xyz.” This permission is communicated through HTTP headers in the request and in the
response.

When a browser makes a cross-origin request, it automatically includes an Origin-header such
as:

Origin: https://www.predic8.de

It tells the server which origin the request is coming from. If the server allows that origin, it
responds with:

Access-Control-Allow-Origin: https://www.predic8.de

This tells the browser: “You can allow a call from code that comes from
https://www.predic8.de”.

For potentially unsafe operations, such as POST, PUT, or any request with custom headers, the
browser must ask the server for permission in advance. It does this using a preflight
request.

💡 Sidenote: Same-Origin Policy vs. CORS
The Same-Origin Policy is the browser’s built-in security mechanism that blocks cross-origin
requests by default.
CORS is a way for servers to opt-in and tell the browser, “This origin is allowed.”
Important: CORS is enforced by the browser, not by the server. If a backend forgets to
include CORS headers, the browser will block the request, even if the backend would’ve
responded.

20.4 Preflight (OPTIONS) Requests

CORS includes a handshake mechanism called preflight, where the browser first asks the
server if a particular cross-origin request is allowed.

The API Gateway Handbook

 144

Image: How a browser performs a CORS preflight before a POST request

Here’s how it works, step by step (illustrated in the image above):

1. A page with JavaScript is loaded from the origin.
2. The script uses the fetch() function to send a POST request with a Content-Type header:

fetch('https://api.predic8.de/shop/v2/products', {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json'
 },
 body: JSON.stringify({ name, price })
});

3. Before the browser makes this potentially sensitive API call, it first sends an OPTIONS
request to ask if the API allows this cross-origin request:

OPTIONS /products/7 HTTP/1.1
Host: api.predic8.de
Origin: https://www.predic8.de
Access-Control-Request-Method: POST
Access-Control-Request-Headers: content-type

The API Gateway Handbook

 145

4. The server receives the OPTIONS request and evaluates it based on its CORS policy.
5. If allowed, it responds with something like:

HTTP/1.1 200 OK
Access-Control-Allow-Headers: content-type
Access-Control-Allow-Methods: POST
Access-Control-Allow-Origin: https://www.predic8.de
Access-Control-Max-Age: 1800

6. The browser reviews this response.
7. If everything is fine, the browser proceeds to send the original POST request.
8. The server processes the request and returns the actual response.

Browsers handle preflight requests quietly in the background, so users usually don’t notice.
But you can inspect them using the Network tab in your browser’s Developer Tools. Just
open the DevTools (usually by hitting the F12 key) and look for the OPTIONS request.

 Image: Preflight request shown in the browser’s developer tools

To handle preflight requests efficiently, use a CORS plugin in your API Gateway. Once
configured, it will add the required headers automatically.

If you want to avoid dealing with CORS altogether, you can sometimes solve the issue at the
gateway level as described in the next section.

20.5 Preventing CORS Problems using a Gateway

One simple and effective way to avoid CORS issues is to serve both the web application and
the API from the same origin. If you control both components and can host them under the
same domain, you can skip all the CORS complexity.

The API Gateway Handbook

 146

This works especially well when an API Gateway or load balancer is placed in front of both
the web server and the API. Even though the web app and the backend API might live on
different machines, the browser only sees and communicates with the gateway.

From the browser’s point of view, everything comes from a single origin, so no CORS
restrictions apply.

Image: Gateway setup that avoids CORS by hiding web server and API behind one address

This setup is common in enterprise or internal applications where you control the full stack.
Routing both static content and API calls through the same gateway simplifies architecture
and removes the need to fiddle with CORS headers.

However, this strategy falls short when you offer APIs to others. If developers are embedding
API calls into apps hosted on different domains, proper CORS configuration becomes
unavoidable. In that case, you’ll need to set up CORS rules at the API Gateway or directly on
the backend.

CORS Support in Gateways

Most API Gateways offer built-in support for CORS, usually in the form of a plugin or
policy.

These components can:

• Intercept and respond to preflight OPTIONS requests
• Add the correct CORS response headers to both preflight and actual requests
• Enforce CORS rules without requiring changes to the backend

This makes it easy to support cross-origin requests without modifying the application that
provides the API. All you need to do is configure the gateway with the rules you want to
allow, such as permitted origins, methods, or headers.

The API Gateway Handbook

 147

The example below shows how to configure an API in the Apache APISIX Gateway with the
CORS plugin enabled:

{
 "uri": "/products/*",
 "plugins": {
 "cors": {
 "allow_origins": "https://www.predic8.de",
 "allow_methods": "POST ",
 "allow_headers": "Content-Type,Authorization",
 "expose_headers": "Content-Length,Content-Type",
 "max_age": 3600,
 "allow_credentials": true
 }
 },
 "upstream": {
 "type": "roundrobin",
 "nodes": {
 "fruitshop2.prod.local:8080": 1
 }
 }
}

💡 Sidenote: Backend stays clean
Because the gateway handles all the CORS logic, your backend services can stay focused on
core functionality without worrying about browser quirks or cross-origin headers.

Resources

Cross-Origin Resource Sharing (CORS), @mozilla.org
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS

The API Gateway Handbook

 148

21 API Load Balancing
Load balancers distribute work across multiple resources. Their main purpose is to scale
applications and even out load. By spreading requests across servers, they also improve
availability and reliability. For that reason, load balancers are also used when the volume of
work or traffic isn't the problem.

21.1 What is an API Load Balancer?

An API load balancer distributes incoming API requests across multiple backend servers.
Unlike general-purpose network load balancers, it operates at the application level with the
HTTP protocol. That means it can make routing decisions not only based on network or
transport information but also on API-specific details such as status codes, HTTP headers, or
tokens like API keys and JSON Web Tokens (JWTs).

21.2 Load Balancing Algorithms

When a request arrives, a load balancer has to decide which backend should handle it. Most
balancers provide several algorithms for node selection, and some even let you define your
own. At a high level, there are two different styles. Static balancers follow simple strategies
such as round robin or random robin. They do not take the actual state of the backends into
account, but they are easy to understand, robust in practice, and often good enough for many
scenarios. Dynamic balancers, in contrast, use more complex algorithms that consider the
current conditions. They might look at the health of each backend, the number of active
connections, or the response time before making a decision. This allows them to distribute
requests more intelligently and adapt to changing conditions, though at the cost of added
complexity.

This section describes algorithms that are supported by many load balancing products. Each
balancer comes with its own twists and variations, but the basic ideas are the same.

The API Gateway Handbook

 149

Round Robin

Round Robin is probably the most widely used load balancing algorithm. It cycles evenly
through all backend servers: the first request goes to server A, the next to server B, then to
server C, and once the list is exhausted it simply starts over again. In the illustration below
you can see how requests one through six are distributed across the backends in this
predictable pattern.

Image: Round Robin distribution of requests across servers

An extension of this approach is weighted round robin, where each backend is assigned a
weight that reflects how many requests it should handle relative to the others. A server with a
higher weight will receive more requests than a server with a lower one. This allows stronger
machines to carry more of the traffic, while weaker ones are still used without being
overloaded.

Although Round Robin feels almost trivial, it does involve keeping track of a counter that
identifies the next node. That counter must be shared between requests. Even though it’s only
a counter, sharing and synchronizing access to it comes at a cost. In high-performance
environments, this overhead is small but worth noting. To avoid it, some systems use a
simpler approach: Random Robin.

The API Gateway Handbook

 150

Random Robin

Random Robin is even simpler than Round Robin. Instead of keeping a counter, it rolls the
dice with a random number to pick the next server. Since it doesn’t maintain any state, it’s
lightweight and robust.

Round Robin guarantees predictability and a fair rotation across servers. Random Robin
trades that predictability for simplicity. Still, when you look at a large number of requests, the
random distribution usually balances out well enough.

Image: Random distribution of requests

The API Gateway Handbook

 151

Session based routing (Sticky Sessions)

Sometimes requests from one client must always be routed to the same backend. For example,
the first request of a client session might be routed to backend C, where the user authenticates.
As long as the next requests in that session go to the same backend, the user stays
authenticated, and the calls are fast. But if a request is suddenly sent to a different backend,
the client may need to authenticate again, which takes extra time and consumes resources.

A common solution is that the backend sets a cookie after successful authentication. The load
balancer then reads this cookie and uses it as a session identifier, ensuring that all future
requests from that client are routed to the same server.

For APIs, cookies are not the only option. Other identifiers are often used as well, such as
JSON Web Tokens (JWTs), API keys, or other forms of client identity. Sometimes values
inside JSON or XML payloads, like a user ID, can serve as session identifier.

In the illustration, the numbers represent session IDs. The load balancer sends requests with
the same ID to the same backend, ensuring session continuity. For example, a client with
session ID 3 is always routed to the second backend.

Image: Sticky sessions based on IDs

The API Gateway Handbook

 152

Priority based balancing

Priority-based balancing is useful when certain servers should be preferred over others. A
common example is when servers are spread across different locations. Local servers are
usually given the highest priority, since they minimize latency and reduce bandwidth costs.
Remote servers, in contrast, are treated as a fallback option that only comes into play if the
local ones fail.

In normal operation, the load balancer routes all traffic to the priority 1 servers in the local
data center.

Image: Using priorities to route requests to backends in a local data center.

If those local servers go down, the balancer simply switches to the next available priority. In
the second illustration, all local servers have problems, so the requests are rerouted to the
priority 2 backends in the remote cloud.

The API Gateway Handbook

 153

Image: Requests rerouted to remote cloud with lower priority

21.3 Dynamic Balancers

A dynamic balancer adjusts the distribution of traffic based on the current state of the backend
servers rather than following a fixed scheme. This makes it more adaptive than static
approaches.

It can take into account the health of nodes, response times, the number of active connections,
or even the ratio of failures to successes. Using this information, it can direct requests to the
servers that are able to handle them fastest, bypass servers that are unhealthy, and make the
most efficient use of limited resources.

Of course, dynamic balancers come with added complexity, and complexity is not always
necessary. Static balancers should not be underestimated. A simple round robin or random
scheme, especially when combined with retries, can still build systems that are both scalable
and resilient.

💡Sidenote: When to use a static or dynamic balancer?
Static balancers are best for simple setups where backends have similar performance.
They’re easy to configure, easy to maintain, and can provide reliability, especially when
combined with retries.
Dynamic balancers are the right fit when backend performance or availability fluctuates.
They’re especially valuable if downtime must be detected and avoided. For expensive
resources (like AI models), dynamic balancing can help squeeze the most out of each server
by optimizing performance and utilization, though at the cost of added complexity.

The API Gateway Handbook

 154

21.4 Health Monitoring

The health of backend systems is probably the most important information for a dynamic load
balancer. After all, routing traffic to a dead or overloaded server defeats the whole purpose.
There are two common ways to gather health information:

Periodic Health Checks

A balancer can periodically probe backends by calling their health endpoints. If a server fails
the check, it is taken out of rotation until it recovers.

This approach is common in microservices and Kubernetes setups, where pods usually
provide dedicated health endpoints such as /healthz or /ready.

As an advantage servers can be taken out of distribution before client calls hit them. But
health checks themselves generate traffic. Often the volume of health checks exceeds the
actual client request volume.

Sidenote: What if there is no health endpoint?
If there is no dedicated health endpoint, you can simply send a GET request against an
existing resource. Ideally, it should be one that touches critical dependencies such as the
database or external services. That way the check validates not only that the server is up, but
also that the resources it depends on are functioning.

Health Statistics

Instead of actively probing, the balancer can rely on real traffic data. By monitoring the
outcome of backend calls (successes vs. failures), it can identify unhealthy servers. Backends
with repeated failures can be removed from rotation.

No additional traffic is needed. The statistics come “for free” from normal exchanges. As a
downside clients may experience failed requests before the balancer learns a server has a
problem.

One way to reduce the impact: combine health statistics with retries. If a request fails, the
balancer retries it against another backend. In many cases, the client never even notices the
failure.

Sidenote: Hybrid Health Monitoring
Many balancers use a mix of both approaches. Active health checks detect problems early
and prevent traffic from hitting unhealthy servers. Health statistics from real traffic give
additional feedback and catch issues that may not show up in simple checks (like degraded
performance or partial failures). By combining the two, a load balancer can make smarter
decisions. Add retries into the mix, and clients often won’t notice a failing server at all.

The API Gateway Handbook

 155

21.5 Availability and Failover

Critical applications that depend on APIs need strong guarantees, and two of the most
important are availability and failover. Availability for an API means that it can be reached
and will accept a request. If the server that is handling the request crashes midway, the client
will still receive an error message. Availability does not promise that the processing itself will
succeed. What it does guarantee is that there is at least another server standing by, ready to
take the next request.

Failover, in contrast, is about shielding clients from technical issues such as server crashes,
downtimes, or network errors. If a server fails while processing a request, the balancer can
hand the request over to another backend that is healthy and able to complete it successfully.

Even a simple static balancer can provide availability by spreading requests across multiple
backends. As long as at least one backend is alive and responding, the API remains reachable.
Compared to failover, ensuring availability is the easier problem to solve.

Failover for APIs is typically realized through retries. If a request to one backend fails, the
balancer can attempt the same request against another server. Retries can be very effective
when used under the right conditions.

Client Retries

Retries are not limited to API Gateways or load balancers. Many HTTP clients also repeat
failed calls. In fact, most HTTP client libraries already include some retry logic, and even
your browser quietly retries certain requests without you noticing. When a retry succeeds, it is
invisible to the application, and the user experiences a smoother interaction. Because
networks are inherently unreliable, retries help to mask those imperfections.

Diagram: Client retrying a request after a network error

The API Gateway Handbook

 156

The catch is that retry behavior varies widely, sometimes even between different versions of
the same library. Most clients only retry certain network-level failures, and usually only for
GET requests, since they are safe to repeat. Very few clients retry automatically on server-
side errors such as 500 or 503.

If clients do not provide the desired retry behavior, or if configuring them is not possible or
becomes too cumbersome, the responsibility can be shifted to a load balancer between the
client and the server. From that position it can handle retries centrally and enforce consistent
behavior across all clients.

Image: Balancer retries failed request on second node

When applied carefully, retries can hide temporary glitches and keep systems running
smoothly. When applied blindly, they risk corrupting data by creating duplicates or leaving a
backend in an inconsistent state.

There are also situations where retrying makes no sense at all. Think of a phone call: if you
get a busy signal, calling again later might work. But if you dial the wrong number, calling it
over and over will not succeed. It will only annoy whoever answers. With APIs it is the same.
Knowing when a retry is worthwhile and when it is pointless is essential to building resilient
systems.

Harmless and harmful methods

Not all HTTP methods behave the same when it comes to retries. A GET request does not
alter the state of the server, which makes it harmless. If a GET call fails, it can be repeated
safely without any consequences.

The API Gateway Handbook

 157

Other methods, however, do change the server. After a PUT or DELETE, the state of the
server is no longer the same as before the call. But if the exact same request is repeated, the
outcome does not change further. In other words, the repetition has no additional effect.

Take the following example. This PUT request changes the product with ID 15 so that its
name is Lemon and its price is 0.79:

PUT /shop/v2/products/15 HTTP/1.1
Host: api.predic8.de
Content-Type: application/json

{
 "name": "Lemon",
 "price": 0.79
}

If the request is sent once, twice, or even three times in a row, the result is the same: the
product remains Lemon priced at 0.79. The server’s state does not diverge further. The same
applies to DELETE. Once a resource is deleted, deleting it again has no effect.

This property is called idempotence. Methods such as PUT and DELETE are idempotent
because repeating them does not introduce new side effects. A load balancer can therefore
retry those requests without concern.

POST, on the other hand, is not idempotent. Each call usually changes the server’s state in a
new way. For example, the following request creates a new product:

POST /shop/v2/products HTTP/1.1
Host: api.predic8.de
Content-Type: application/json

{
 "name": "Apricot",
 "price": 1.49
}

The API Gateway Handbook

 158

Calling it three times will create three different products, all named Apricot but with unique
IDs:

{
 "products": [
 ...
 {
 "id": 19,
 "name": "Apricot"
 },
 {
 "id": 20,
 "name": "Apricot"
 },
 {
 "id": 21,
 "name": "Apricot"
 }
]
}

Because POST is not idempotent, retries must be avoided or applied with great care. That
said, there are conditions under which retrying a POST can be safe as we will see later.

Besides the HTTP method, the status code also provides important clues about whether a
failed call can be retried.

HTTP Status Codes

Failed requests are answered with a status code of 400 or greater. The 4xx codes are almost
never worth retrying, because they indicate user or client errors. A 404 Not Found or 405
Method Not Allowed will return the same result no matter how many times you repeat the
request.

The 5xx codes, on the other hand, signal server-side errors. Some of them make retries
pointless. 501 Not Implemented, for example, is not going to succeed on the second try unless
the developers implement the missing feature in the meantime. But others, such as 500
Internal Server Error, 502 Bad Gateway, or 504 Gateway Timeout, could succeed on retry,
especially if the problem was transient or limited to one backend node.

The most common case is the generic 500 Internal Server Error. It typically occurs when the
server has problems connecting to a database, cannot reach a downstream API, or has run out
of memory. Retrying the same server node in those conditions is unlikely to help. But trying
another backend may work if that server is healthy.

The table below shows common 5xx codes and whether a retry with the next node is generally
considered sensible:

The API Gateway Handbook

 159

Many API Gateways and load balancers allow you to configure retry behavior for 5xx codes,
since not all applications need the same handling.

There are even cases, where retrying a POST request after a 500 can be safe. With proper use
of transactions and a suitable framework, a server application can guarantee that no state
change occurred before the error was raised, or that the transaction was rolled back entirely.
But this requires absolute certainty. If the server state has changed, repeating the POST risks
corrupting data or creating duplicates.

Network Errors

Not every failure comes from the backend server itself. The network can also be the culprit. A
network error can occur before a request reaches the server, while the server is processing it,
or even after the server has finished its work.

If the error happens before the server was reached, it is safe to retry, even for a non-
idempotent request such as POST, since the backend never saw it. But if the error occurs
during or after processing, the request may already have caused a change on the server,
which makes retries risky.

That is why understanding the exact meaning of network-related error codes is important:
they provide clues about when the error occurred. Some codes clearly indicate that the request
was never delivered at all. For example, the TCP error Connection Refused means that no
process was listening on the target port. In that case it is safe to retry even a POST because
the server never received the call.

Status Code Description Retry is sensible
500

Internal Server Error yes

501

Not implemented no

502

Bad Gateway (backend failed) yes

503

Service Unavailable yes

504

Gateway timeout yes

507 Insufficient Storage yes

The API Gateway Handbook

 160

The table below lists common TCP error messages and whether retrying is generally
considered safe:

TCP Error Meaning Is Retry safe?
Connection refused No process is listening (server down or a

blocking firewall)

Yes

Connection reset Connection closed by the peer (crash,
overload, firewall)

No

Connection aborted Connection closed unexpectedly (often
local socket issue)

Yes

Connection timed out No response within timeout

No

Host unreachable No route to the host

Yes

Network unreachable Routing issue, request never left client.

Yes

If there is even the slightest doubt that request processing has already started, a non-
idempotent call must not be repeated. The risk of duplicating or corrupting data is too high.

Load balancers are aware of common network errors and know how to react to them. In most
cases, you can rely on their default behavior without needing to adjust any configuration. This
makes handling network glitches largely transparent, so developers can focus on the
application logic rather than fine-tuning error handling in the balancer.

21.6 Single Point of Failure

High availability means avoiding a single point of failure. Instead of relying on a single
backend server, you usually have at least two or even more nodes. A load balancer can then
distribute requests to a healthy server.

But what if the load balancer itself goes down? In that case, it becomes the weakest link. To
avoid this situation, you can take different approaches.

DNS Load Balancing

The Domain Name System (DNS) can be used to achieve load balancing directly on the client
side, removing the need for a separate load balancer in the middle that could otherwise
become a single point of failure.

When a client wants to connect to a server, it first resolves a hostname like api.predic8.de
to an IP address, for example 20.113.32.106. Instead of returning just a single address, a

The API Gateway Handbook

 161

DNS server can return multiple IPs for the same hostname. If one of those addresses does not
respond, the client can simply try the next one.

Here’s an example with Cloudflare, which provides two IP addresses for the same hostname:

$ dig www.cloudflare.com +short
104.16.123.96
104.16.124.96

DNS load balancing happens on the client side, which means there is no central load balancer
that could fail. This makes it a very robust option. It’s no surprise that many of the largest
websites on the Internet, including Apple, Google, and Cloudflare rely on DNS-based
balancing.

Support for multiple IP addresses, however, depends on the client software. Some HTTP
libraries, such as Java’s HttpClient (since Java 11), Go’s net/http, or curl, handle
multiple IPs gracefully and retry with another if one fails. Other clients may only use the first
IP address provided by the operating system and ignore the rest.

Another factor is caching. DNS records have a time-to-live (TTL), and depending on the
value, clients may hold on to old IP addresses for minutes or even hours. That means changes
to the DNS configuration are not always reflected instantly.

Sidenote: DNS load balancing in Kubernetes
Kubernetes relies heavily on DNS. Services inside a cluster are assigned stable DNS names,
and kube-proxy ensures traffic gets routed to the right pods. This means DNS is central not
just for big websites, but also for container orchestration at scale.

Anycast Routing

The next approach, anycast routing, also avoids a central balancer by sharing the same IP
address by multiple servers. When a client connects, the Internet’s routing infrastructure
automatically directs the request to the server that is closest in network terms. Much like DNS
load balancing, anycast eliminates a single point of failure and distributes traffic naturally
across multiple endpoints.

The setup, however, is more complex and comes with some caveats. Connections may break
if the advertised IP address shifts during an active session. Because the same IP is served by
multiple nodes, TLS keys must be shared consistently across all endpoints. And since each
request can end up at a different server, maintaining session stickiness or stateful
authentication is more difficult.

Despite these challenges, anycast is widely used and supported directly by major cloud
providers. Services such as AWS Global Accelerator, Google Cloud Platform’s Global Load
Balancer, Azure Front Door, and Cloudflare all offer anycast-based load balancing.

The API Gateway Handbook

 162

Keep the Load Balancer Simple

If DNS load balancing or anycast are not an option, you may have to accept that the load
balancer itself could become a single point of failure. Generally, anything that is complex and
likely to fail should be made redundant, think of backend applications that depend on
databases and external services. But components that are simple, unlikely to fail, and easy to
recover can sometimes be left as a single instance. Load balancers and API Gateways often
fall into this category.

A balancer running in a small, stateless container without a database can usually run for a
long time without issues. And if it fails, restarting the container typically takes only a few
seconds. Because it is stateless, the restarted balancer comes back as pristine as a new one.
Standby virtual machines can provide a similar level of resilience if containers are not an
option.

To minimize the impact of failures, monitoring is key. Detecting problems early and reacting
quickly keeps downtime short and prevents the balancer from becoming a weak spot.

The API Gateway Handbook

 163

22 Performance
An API gateway sits between client and backend, adding an extra hop in the communication
path. Naturally, this introduces some overhead. But how much does this really matter in
practice?

22.1 Latency

Latency is the time it takes for a request to travel from the client to the server and back,
including all the processing that happens in between. In the context of APIs, it’s typically
measured from the moment a client sends a request to the moment it receives the response.

Image: Measuring the latency of an API call

Low latency is crucial for user-facing applications such as web UIs or mobile apps, where
every millisecond affects perceived responsiveness.

An API Gateway introduces an additional hop between the client and the backend. Each
request passes through several processing steps, each adding a small amount of delay:

1. Reading the request from the network socket
2. Decryption (if TLS is used)
3. Deserialization of the HTTP headers and payload
4. Route the request to the correct API and determine applicable plugins
5. Execution of global and route-specific plugins (e.g., validation, transformation)
6. Serialization of the response payload
7. Encryption before sending the response

These steps are performed twice: once for the incoming request and again for the outgoing
response.

The API Gateway Handbook

 164

What’s the Typical Overhead of an API Gateway?

For simple routing scenarios, most API gateways add less than 1 to 10 milliseconds of
latency. Even with TLS termination, basic validation, and lightweight transformations, the
overhead typically remains in the low-millisecond range.

In most real-world systems, the backend services are the primary contributors to total
response time not the gateway.

However, performance can degrade if the gateway is overloaded with resource-intensive
plugins. Operations like deep payload inspection, full-schema validation, or complex
transformations can significantly increase processing time.

Streaming Optimizations

Some gateways support streaming, where the request payload is piped directly to the backend
without being fully deserialized bypassing steps like body parsing and serialization. This
reduces latency significantly.

However, streaming is only possible if no plugin needs access to the payload. As soon as a
plugin performs operations like JSONPath evaluation or schema validation, full message
processing is required and streaming is disabled.

22.2 Bandwidth (Throughput)

How many requests can a gateway handle concurrently?

The throughput or number of requests per second (RPS) that a gateway can handle depends
on several key factors:

• Enabled plugins and processing tasks
Features like OpenAPI validation, JSON/XML transformations, or content filtering can
significantly affect performance.

• Message size and complexity
Small payloads under 1 KB are processed much faster than large, deeply nested XML
documents hundreds of megabytes in size.

• Applied security mechanisms
Token validation, rate limiting, and TLS encryption all add processing overhead.

Beyond configuration, hardware and the gateway product itself also play a role. Go-based
gateways like KrakenD and Tyk advertise benchmarks over 80,000 RPS. That’s certainly
impressive, but real-world performance can vary. For example, on a five-year-old laptop, I
achieved 10,000 RPS using a Java-based gateway. So, it’s not just about the programming
language.

The API Gateway Handbook

 165

In most cases, the engaged plugins have a far greater impact on performance than the core
gateway engine itself.

22.3 Performance Tuning

Truth be told, performance tuning is rarely needed. If you really want to squeeze out a few
extra RPS (requests per second) or reduce latency, here are some proven tips:

• Disable or reduce logging.
Logging can add noticeable overhead, especially at high throughput.

• Measure plugin performance.
Some plugins can be resource hungry. Identify the heavy hitters.

• Use built-in metrics.
Most gateways expose valuable performance data.

• Set up monitoring.
Tools like Prometheus and Grafana help you visualize and track performance bottlenecks.

If you're interested in getting the overall performance across multiple API Gateways and
microservices, consider integrating OpenTelemetry. It provides distributed tracing so you
can measure each segment of the communication path with precision.

Still hitting the ceiling? Then scale out. API Gateways are stateless, which makes it easy to
add more instances to distribute the load evenly. (More on that in Section 0.)

Resources

KrakenD Homepage
https://www.krakend.io/

Tyk Performance Benchmarks
https://tyk.io/performance-benchmarks/

The API Gateway Handbook

 166

Part 2
API Gateways in Practice

This part gets hands-on. Real-world examples will bring key concepts and common scenarios
to life, from basic routing and load balancing to advanced topics like request transformation,
service orchestration, legacy system integration, and token validation.

As mentioned earlier, Membrane API Gateway will be used for demonstrations. It’s a
lightweight, open-source tool that makes practical experimentation easy and transparent.

That said, the examples presented here aren't specific to Membrane. The patterns and
configurations apply broadly and can be adapted to most modern API gateways. The goal is to
understand the underlying principles—not to focus on a particular product.

The API Gateway Handbook

 167

23 Membrane API Gateway
Membrane API Gateway is a lightweight and flexible solution designed for simplicity and
extensibility. Its clean configuration style and powerful feature set make it ideal for
demonstrating a wide range of API gateway techniques.

It has been battle-tested in organizations of all sizes and across industries worldwide.

Membrane is released under the Apache 2 open source license, a permissive license that
allows free use, modification, and distribution, even in commercial environments. With no
licensing fees or usage restrictions, it’s a practical choice for both learning and production
deployments.

Interestingly, some commercial API gateways on the market are built on top of Membrane,
underscoring its reliability and solid architectural foundation.

23.1 Installation and First Steps

This section walks you through the installation process to ensure you're ready to follow the
upcoming examples. You’ll learn how to install Membrane and to verify it’s running properly.

Don’t worry, installation usually takes less than 10 minutes.

Membrane is written in Java and offers multiple deployment options. In this section, we’ll
focus on two popular methods: running it with Docker and using the standalone Java
distribution. For additional deployment options, see:
https://www.membrane-api.io/deployment/

23.1.1 Standalone Java Installation

If your system already has a Java runtime, or if you can install one, the standalone installation
is an excellent way to try Membrane and explore its features. This method makes it easy to
run the many examples included with the distribution. In production, you can later choose to
run Membrane in a container if desired.

The API Gateway Handbook

 168

Step 1: Verify Your Java Installation

Ensure you have Java 21, or a newer version installed by running:

java -version

The output should resemble:

openjdk version "21.0.5" 2024-10-15 LTS

If you need to install Java, visit https://www.java.com/en/download/ and follow the provided
instructions.

Step 2: Download and Unzip Membrane

Download the latest version from:

https://github.com/membrane/api-gateway/releases

Once downloaded, unzip the file.

Step 3: Start Membrane

Navigate to the Membrane folder and start the gateway:

cd membrane-api-gateway-6.1.0

./membrane.sh

or

cd membrane-api-gateway-6.1.0

membrane.cmd

on Windows.

After starting, Membrane displays information about the deployed APIs:

13:41:12,032 INFO 1 main ProxyInfo:31 {} - Started 5 APIs:
13:41:12,034 INFO 1 main ProxyInfo:33 {} - API 0.0.0.0:2000 using
OpenAPI specifications: - "fruitshop-v1-1" @ fruitshop-api.yml
13:41:12,034 INFO 1 main ProxyInfo:33 {} - API 0.0.0.0:2000 /names
13:41:12,034 INFO 1 main ProxyInfo:33 {} - API Groovy
13:41:12,034 INFO 1 main ProxyInfo:33 {} - API 0.0.0.0:2000
13:41:12,035 INFO 1 main ProxyInfo:33 {} - API Console

The API Gateway Handbook

 169

Step 4: Accessing an API

Open in your browser:

http://localhost:2000

You should see a JSON document returned. This data comes from the backend service at:
https://api.predic8.de

In the next section, we’ll take a closer look at the API configuration and explore how to
customize the gateway’s behavior.

💡 Hint: No direct Internet Connection
If this doesn’t work, make sure your machine has direct Internet access. Some corporate
networks or environments use proxies that block outbound connections.
If you're behind such a proxy or have no direct Internet access, check out the file proxies-
offline.xml in the conf folder. It contains instructions on how to run Membrane offline.

The API Gateway Handbook

 170

23.1.2 Docker Installation

Even if Docker is part of your long-term plan, it’s a good idea to begin with the full
Membrane distribution running locally via Java, as described in the previous section. That
makes it easier to explore the many included examples, most of which aren’t containerized
and are simpler to run in a local environment.

That said, if you prefer Docker, you can absolutely follow along using it. For production
environments, Docker or Kubernetes is generally the preferred choice, and Membrane
supports both out of the box.

To get started quickly with Docker, you can use this command:

docker run -it -p 2000:2000 predic8/membrane

However, to follow along with the examples in this book, we recommend using a setup that
gives you access to and control over the proxies.xml configuration. Here’s how to do that:

Step 1: Download and unzip Membrane

Get a recent Membrane distribution from:

https://github.com/membrane/api-gateway/releases

Unzip the archive into a directory of your choice.

Step 2: Starting a Membrane Docker Container

Open a terminal and navigate to the Membrane distribution directory:

cd membrane-api-gateway-6.1.0

Start the container, mounting the proxies.xml file from the conf folder. Make sure you are
really in the membrane-api-gateway-* folder:

On macOS/Linux:

docker run -it -p 2000:2000 \
 -v "$(pwd)/conf/proxies.xml:/opt/membrane/conf/proxies.xml" \
 predic8/membrane

On Windows (PowerShell or CMD):

docker run -it -v -p 2000:2000
${PWD}\conf\proxies.xml:/opt/membrane/conf/proxies.xml
predic8/membrane

The API Gateway Handbook

 171

Troubleshooting

📌 Note: PWD
If ${PWD} doesn’t work in PowerShell, replace it with the full path manually, e.g.
C:\Users\YourName\Downloads\membrane-api-gateway-6.0.1\conf\proxies.xml

🔧 Right Directory
Check if conf/proxies.xml is reachable

Step 3: Testing the Installation

Open in the browser:

http://localhost:2000

You should see a JSON document like this:

{
 "apis": [
 {
 "name": "Shop API Showcase",
 "description":"API for REST exploration, test and
demonstration. Feel free to manipulate the resources using the
POST, PUT and DELETE methods. This API acts as a showcase for
REST API design.",
 "url":"/shop/v2/"
 }
]
}

💡 Hint: If the browser shows a connection error, make sure Docker is running and you have
a working Internet connection.

The API Gateway Handbook

 172

24 API Configuration
Membrane’s behavior is configured in the proxies.xml file located in the conf folder. This
is an XML configuration file based on the Spring Framework, which gives Membrane much
of its flexibility and extensibility.

While there is experimental support for YAML and Kubernetes Custom Resource Definitions
(CRDs), we recommend sticking with the XML format, especially when working through the
many ready-to-use examples included in the distribution.

You can edit the configuration with any text editor, but using tools like IntelliJ or Visual
Studio Code is strongly recommended. These editors offer helpful XML features such as:

• Auto-completion (Ctrl+Space)
• Syntax highlighting
• Inline documentation based on the XML Schema declared at the top of the file

These features make editing more efficient and significantly reduce the chance of
configuration errors.

Image: Help from Autocompletion

First API Configuration

The following steps show how to extend a basic API configuration to enable logging of
requests and responses.

The API Gateway Handbook

 173

Step 1: Open proxies.xml

Navigate to the conf subfolder in the Membrane distribution and open the proxies.xml file
in your preferred editor.

Step 2: Add Logging

Locate this section in the file:

<api port="2000">
 <target url="https://api.predic8.de"/>
</api>

Now insert a <log/> element before the <target> so the configuration looks like this:

<api port="2000">
 <log/>
 <target url="https://api.predic8.de"/>
</api>

This tells Membrane to log HTTP request and response information for all traffic handled by
this API.

Step 3: Save and Reload

Save the file. Membrane automatically detects changes to proxies.xml and reloads the
configuration.

If something doesn’t seem to work, check the terminal output for any log statements or error
messages. These often provide helpful clues for resolving configuration issues.

Step 4: Test the Change

Open your browser and visit:

http://localhost:2000

Then check the terminal window. You should now see detailed logs for the incoming request
and the corresponding response, confirming that logging is working.

The API Gateway Handbook

 174

💡Sidenote: Configuration Hot Reloading
Membrane automatically reloads the configuration whenever changes to proxies.xml are
detected. However, the reload may be delayed while traffic is active to prevent breaking in-
progress requests. If that happens, you can stop Membrane manually by pressing Ctrl+C in
the terminal and then restart it. Your updated configuration will be applied on restart.

This feature can be turned off by setting <router hotDeploy="false"> in the
proxies.xml file.

24.1 Configuration Errors

If your proxies.xml file contains an error, Membrane will report it during startup or when
the configuration is reloaded. These messages appear in the terminal or log output and can
help pinpoint issues.

While Membrane aims to provide helpful diagnostics, some low-level XML parsing errors,
especially those from the underlying XML parser, can be difficult to decipher.

Fortunately, most modern editors like IntelliJ IDEA or Visual Studio Code offer built-in XML
support. Errors are highlighted directly in the editor, often with tooltips explaining the
problem. This can save you time and frustration when editing the configuration.

Image: XML Validation Error displayed in Editor

The API Gateway Handbook

 175

25 Routing Traffic
Routing is one of the core responsibilities of an API Gateway. It ensures that incoming client
requests are forwarded to the correct backend service. This is typically done through API
definitions that match certain criteria, such as HTTP methods or request paths.

The example below shows how to configure Membrane to route traffic. In this case, the
gateway listens for GET requests on port 2000 that begin with the path /shop/v2, and
forwards them to the backend host api.predic8.de:

<api port="2000" method="GET">
 <path>/shop/v2</path>
 <target url="https://api.predic8.de"/>
</api>

You can try this setup yourself. Once the configuration is in place, test the route using the
command line:

curl http://localhost:2000/shop/v2/

Alternatively, use the REST Client plugin in Visual Studio Code to send and inspect the
request.

Image: Using Visual Studio Code as API client using the REST Client plugin

The API Gateway Handbook

 176

25.1 Sequence of API Matching

API Gateways often manage dozens, sometimes hundreds, of API definitions. When a request
arrives, the gateway evaluates them in the order they appear. It stops at the first match and
processes the request using that configuration.

Let’s take a look at an example where two APIs are defined:

<api name="API 1" port="2000" method="GET">
 <path>/shop/v2</path>
 <log message="Method: ${method}"/>
 <target url="https://api.predic8.de"/>
</api>

<api name="API 2" port="2000">
 <path>/shop/v2</path>
 <log message="Method: ${method}"/>
 <target url="https://api.predic8.de"/>
</api>

Now let’s test this setup step by step.

Case 1: Receiving a GET request

After this request:

GET /shop/v2/products
Host: localhost:2000

In the console output, you’ll see something like this:

10:38:33,081 INFO 69 ... {api=API 1} - Method: GET
10:38:33,220 INFO 69 ... {api=API 1} - Method: GET

Note that API 1 was selected.

Why two entries? Because the <log> element is executed twice, once during the request
phase and once during the response phase.

The API Gateway Handbook

 177

Case 2: Receiving a POST request

Let's look at a POST request:

POST /shop/v2/products
Host: localhost:2000
Content-Type: application/json

{
 "name": "Biscuits", "price": 1.99
}

Here’s what happens:

• API 1 is skipped because it only allows GET.
• API 2 has no method restriction, so it matches and handles the request.

The log output confirms this:

... {api=API 2} - Method: POST

Case 3: Receiving a request to an unknown path

A request with an unknown path:

GET /nirvana HTTP/1.1
Host: localhost:2000

Neither API definition matches the path, so Membrane returns: 404 Not found.

Default API for Unmatched Requests

In some cases, it’s helpful to define a fallback for requests that don’t match any API
definition. You can configure a default API at the end of your proxies.xml file to catch all
unmatched requests.

Here’s an example:

<api port="2000">
 <response>
 <static>My own not found message!</static>
 </response>
 <return statusCode="404"/>
</api>

The API Gateway Handbook

 178

With this setup, any request on port 2000 that doesn’t match a more specific API will receive
a 404 Not Found response along with your custom message.

Tip: Custom Not Found
Place a fallback API after all other definitions providing a custom error message.

25.2 Routing Criteria

API Gateways can base routing decisions on almost any part of a client's request, not just the
path, method, or port. Common routing criteria include:

Criteria Description
Port Port on which the request was received.
IP IP address of the client.
HTTP Method The HTTP method used (e.g., GET, POST).
Host

The value of the Host header. Useful for supporting multiple virtual
hosts.

Path The requested path (e.g., /shop/v2/).
Header Any header fields
Content The content or payload of the request.

Content based Routing

Even the payload itself can influence routing. For example, an API Gateway can inspect the
message body to decide how to handle a request.

Here’s an example using a condition on a JSON field in the request body:

<api port="2000"
 test="json['name'] == 'Lolly'"
 language="SPEL">
 <path>/shop/v2</path>
 <log message="It is a lolly!"/>
 <target url="https://api.predic8.de"/>
</api>

The API Gateway Handbook

 179

Try this API with:

POST /shop/v2/products
Host: localhost:2000
Content-Type: application/json

{
 "name": "Lolly"
}

and have a look at the log output.

💡Sidenote: Test expressions
Membrane supports SPEL, Jsonpath, XPath and Groovy expressions in the test attribute to
route based on headers, query parameters, or message body content. See the chapter about
expression languages for details.

25.3 URI Templates

URI templates, common in OpenAPI definitions and many REST frameworks, allow flexible
path definitions using placeholders that capture values directly from the request path.

For example, the following template:

/products/{pid}

matches a request like:

/products/7

The value 7 is extracted and assigned to the placeholder pid, which is accessible through the
variable pathParam.

The API Gateway Handbook

 180

In API gateways, URI templates can be used as routing criteria. Here’s a configuration
example that routes requests based on the structure of the incoming path:

<api port="2000">
 <path>/products/{pid}</path>
 <log message="Product: ${pathParam.pid}"/>
 <return/>
</api>

<api port="2000">
 <path>/products</path>
 <log message="List of products"/>
 <return/>
</api>

<api port="2000">
 <path>/customers/{cid}</path>
 <log message="Customer: ${pathParam.cid}"/>
 <return/>
</api>

With this setup, incoming requests are handled as follows:

• GET http://localhost:2000/products
Logs: "List of products."

• GET http://localhost:2000/products/7
Logs "Product: 7"

• GET http://localhost:2000/customers/14
Logs "Customer: 14"

25.4 Naming APIs

Clear and descriptive names make it much easier to keep track of your APIs—especially once
your gateway is handling dozens or even hundreds of them.

If you don’t assign a name, Membrane will generate one automatically based on routing
parameters. For example:

0.0.0.0:2000 /products/{pid}

While this works, it’s not exactly easy to read or remember. A better way is to use the name
attribute to give your API a meaningful label:

<api port="2000" name="Fruitshop">
 <path>/shop/v2</path>
 <target url="https://api.predic8.de"/>
</api>

The API Gateway Handbook

 181

These names appear in the logs, monitoring dashboards, and the Membrane web console:

13:11:13 INFO 5 Log:148 {api=Fruitshop} - Path: /shop/v2

Having named APIs makes debugging and monitoring a whole lot easier. Instead of trying to
decipher cryptic port and path combos, you’ll see exactly which API handled the request.

	

The API Gateway Handbook

 182

26 Message and Exchange Objects
Most API gateways wrap an incoming request and its corresponding response into a shared
structure called an exchange. This exchange object acts as the central hub where the gateway
and its plugins read, inspect, and manipulate both the request and the response.

This design streamlines processing and enables features like authentication, rate limiting, and
transformation, all using the same unified object.

When a request arrives, the gateway wraps it in an exchange and sends it along the request
flow. At that point, the exchange only holds the request, but there’s no response yet. Once the
backend replies, the response is added to the same exchange, and processing continues along
the response flow. Now, both request and response are available for logging, modification, or
policy enforcement.

Image: Structure of an exchange object in the request and response flows

The request and response parts of the exchange look similar:

• Both contain HTTP headers
• Both can carry a body (e.g. JSON, XML, binary)

However, they also differ:

• The request includes the HTTP method and the path
• The response adds the HTTP status code

The API Gateway Handbook

 183

Image: Structure of the exchange object

But there’s more: the exchange also maintains a set of properties. These are key-value pairs
used to share information across plugins and processing stages. For example, one plugin
might store the result of an authentication check so that later plugins can use that for
permission checks. Others may use properties for dynamic routing or tracking custom metrics.

In the next section, we’ll explore how exchange properties enable multiple plugins to work
together seamlessly and efficiently.

26.1 Message Properties

API configurations often apply multiple plugins in sequence, each performing its own task.
For instance, one plugin might extract a value from the incoming request’s query string, while
a subsequent plugin uses that value to build a custom JSON message. This chain of operations
requires a way to share and persist data across stages, which is where message properties
(also known as exchange properties or variables) come into play.

Consider the following two APIs. The first API accepts a query string parameter named color
and returns an HTTP header after calling a backend. The second API just serves as a simple
mock backend, always returning the same static response.

The API Gateway Handbook

 184

<api port="2000">
 <request>
 <setProperty name="color" value="${param.color}"/>
 </request>
 <response>
 <setHeader name="X-Color" value="${property.color}"/>
 </response>
 <target host="localhost" port="2001"/>
</api>

<api port="2001">
 <response>
 <static>Hi!</static>
 </response>
 <return/>
</api>

Now call the first API:

GET http://localhost:2000?color=red

During the request flow the query parameter color is read and stored in an exchange property
with the same name. The gateway then invokes the backend API. After receiving the
response, the gateway can still access the color property and insert it into the X-Color
response header. The final response to the client looks like this:

HTTP/1.1 200 Ok
Content-Type: text/plain
X-Color: red

Without storing the color value in the exchange, it wouldn’t be possible to access it in the
response flow. Exchange properties are what connect the request and response flows.

The API Gateway Handbook

 185

Image: Using properties to share values between request and response flow

Message properties are key-value pairs stored in the exchange context. They allow plugins to
remain loosely coupled while still communicating with one another. This makes it possible to
build sophisticated behavior across an API flow.

The API Gateway Handbook

 186

26.2 Short Circuit Responses

In some cases, you may want an API to return a response immediately, without calling a
backend service. This is especially useful for testing, mocking, and error handling. You’ll see
this pattern frequently throughout this book.

Image: API returning without routing to a backend

Best Practice: Handling 404 Not Found

A common use case for short circuiting is to define a catch-all API that returns a 404 Not
Found status. We’ve seen this pattern earlier in the routing chapter. By placing this API at the
end of a configuration, you ensure it only applies when no other API matched the request.

<api port="2000">
 <response>
 <static>My personal not found message!</static>
 </response>
 <return statusCode="404"/>
</api>

The API Gateway Handbook

 187

Best Practice: Temporarily Blocking Access to Resources

Sometimes you need to block access to an endpoint of your API, for example, during
maintenance or a rollout freeze. You can use a static response to reject specific requests
without touching the backend or the routing logic.

Here’s how to block all POST requests to /products:

<api port="2000" method="POST">
 <path>/products</path>
 <response>
 <static contentType="application/json">
 {
 "message": "Temporarily unavailable"
 }
 </static>
 </response>
 <return statusCode="503"/>
</api>

This approach is useful for maintenance windows or temporary lockouts without having to
disable or reconfigure entire services.

The API Gateway Handbook

 188

27 OpenAPI
In this chapter, we’ll explore how to put OpenAPI documents to practical use with your API
Gateway. You’ll learn how to:

• Set up APIs automatically using OpenAPI as configuration
• Let the gateway rewrite addresses inside OpenAPI documents
• Validate requests and responses against OpenAPI definitions
• Establish APIOps best practices using OpenAPI as a central source of truth

These features help streamline your workflows, improve reliability, and reduce manual effort
when managing APIs at scale.

📖 Background First?
This chapter builds on the general concepts from Chapter 6: OpenAPI. If you're new to
OpenAPI or want a vendor-neutral overview, we recommend starting there before diving into
the Membrane-specific examples.

27.1 Gateway Configuration Using OpenAPI

OpenAPI documents define your API’s structure, paths, methods, parameters, authentication,
and more. But beyond serving as documentation, these specs can be used directly to configure
API gateways. This keeps the actual runtime behavior aligned with what’s declared in the
spec, reducing errors and simplifying setup.

Take the following example. The gateway configuration is almost entirely driven by an
OpenAPI file. All you need to add is the port:

<api port="2000">
 <openapi location="fruitshop-api.yml"/>
</api>

Once deployed, you can open a generated overview page at:

http://localhost:2000/api-docs

The gateway reads the OpenAPI file, extracts the title, version, and available paths, and
presents them in a compact overview.

The API Gateway Handbook

 189

Image: Overview of APIs deployed from OpenAPI

From here, developers can either download the OpenAPI document or launch Swagger UI to
explore and test the API interactively.

Image: Swagger UI with deployed OpenAPI

The API Gateway Handbook

 190

Loading Multiple APIs

You can of course configure each OpenAPI individually, but if you're exposing dozens of
APIs, there’s a simpler way:

<openapi dir="conf"/>

This will scan the conf directory and automatically load every OpenAPI file it finds.

Referencing Remote Documents

Membrane can also fetch OpenAPI specs from remote locations. Just provide a URL:

<openapi location="https://api.predic8.de/api-docs/fruit-shop-
api-v2-2-0"/>

This is especially useful when storing specs in a central repository or a version-controlled web
server. Once the document is updated, you can roll out the new configuration simply by
restarting the gateway.

💡 Sidenote: Declarative Configuration
Declarative configurations are a cornerstone of modern API ops. When the spec defines both
your documentation and your runtime behavior, it’s easier to ensure consistency, validate
changes, and automate deployments.

27.2 Configuring OpenAPI Rewriting

As described in Part I, Chapter 6.2 about OpenAPI URL Rewriting, the servers field needs
to reflect the public address of the API, not the internal address of the backend. Otherwise,
clients generated from that OpenAPI might bypass the gateway entirely.

By default, the API Gateway rewrites the servers section automatically. It takes the
protocol, hostname, and port from the incoming request and uses them to replace the values
in the OpenAPI document before serving it.

Take a look at how the rewritten URLs depend on the incoming request:

Request Rewritten URL in the OpenAPI
http://localhost:80/shop.yml

http://localhost:80/shop/v2

http://127.0.0.1/shop.yml http://127.0.0.1/shop/v2

This behavior works well in development environments where internal and external addresses
are often the same.

The API Gateway Handbook

 191

But things change once you move into production.

In real-world setups, gateways usually sit behind firewalls, inside private networks, or tucked
away in containers. The gateway address visible to external clients is usually different from
the gateway’s internal address.

Image: External and Internal address of an API

To ensure external clients get the correct public-facing address, you have to override the
rewrite behavior with explicit parameters:

<api port="2000">
 <openapi location="fruitshop-api.yml">
 <rewrite host="api.predic8.de"
 protocol="https"
 port="443"/>
 </openapi>
</api>

This configuration tells the gateway to serve an OpenAPI document with the correct public
entry point:

servers:
 - url: https://api.predic8.de/shop/v2

💡 Sidenote: Why not just serve a manually updated OpenAPI?
You could, but that introduces manual maintenance. Any time the backend API changes, like
when a new endpoint is added, you’d have to update both the backend and the OpenAPI
stored at the gateway. With dynamic rewriting, the gateway can fetch the current OpenAPI
from the backend and simply replace the address. You get accurate, up-to-date specs with
minimal effort and no duplication.

The API Gateway Handbook

 192

27.3 OpenAPI Message Validation

Membrane supports request and response validation based on OpenAPI specifications, but it’s
turned off by default. You can activate request validation by adding the validateRequests
attribute to the API definition:

<api port="2000">
 <openapi location="fruitshop-api.yml"
 validateRequests="yes"/>
</api>

💡Sidenote: Why OpenAPI Validation is disabled by default
Validation isn’t turned off because of performance concerns. The overhead for typical
requests is minimal. Instead, it’s disabled by default to avoid unexpected behavior. Once
request validation is active, response validation often makes sense too. But this can lead to
surprises, especially when error responses from the backend don’t match the OpenAPI spec
and get blocked by the gateway. Keeping validation off by default ensures a smoother
experience until you’re ready to enable both directions intentionally.

Once enabled, requests that match the OpenAPI contract will pass through without issue. For
example:

POST /shop/v2/products
Host: localhost:2000
Content-Type: application/json

{
 "name": "Figs",
 "price": 2.7
}

In the Fruitshop’s OpenAPI document, the price field is defined as a non-negative number:

price:
 type: number
 minimum: 0

The API Gateway Handbook

 193

If someone sends a value that violates this rule, say, a negative price, the gateway rejects the
request and responds with a detailed validation error:

HTTP/1.1 400 Bad Request
Content-Length: 640
Content-Type: application/problem+json

{
 "title": "OpenAPI message validation failed",
 "type": "https://membrane-api.io/problems/user/validation",
 "validation": {
 "method": "POST",
 "uriTemplate": "/products",
 "path": "/shop/v2/products",
 "errors": {
 "REQUEST/BODY#/price": [
 {
 "message": "-10 is smaller than the minimum of 0",
 "complexType": "Product",
 "schemaType": "number"
 }
]
 }
 }
}

Membrane uses the Problem Details for HTTP APIs format to return validation errors. This
standardized format includes structured fields that make it easier for clients to understand and
correct issues.

By default, Membrane provides a detailed explanation of what went wrong, including which
part of the request failed and why. While this is great for debugging and development, it
might reveal too much information in a production environment.

The API Gateway Handbook

 194

If you'd prefer to keep error messages more generic, you can suppress the detailed output
using the validationDetails attribute:

<openapi location="fruitshop-api.yml"
 validateRequests="yes"
 validationDetails="no"/>

Response Validation

You can also enable response validation, which verifies that backend responses conform to
the contract as well:

<openapi location="fruitshop-api.yml"
 validateRequests="yes"
 validateResponses="yes"/>

While request validation is commonly used, response validation is often overlooked. Still, it’s
just as important for catching bugs, improving client compatibility, and preventing
accidental data leaks.

We'll dive deeper into response validation in the security-focused chapters later in the book.

27.4 APIOps with OpenAPI

APIOps brings DevOps thinking into the world of APIs. It’s all about applying automation,
testing, and repeatable processes to the entire API lifecycle, from design and development to
deployment and monitoring.

By adopting APIOps practices, teams can reduce manual work and deliver consistent quality
across all environments. When OpenAPI specifications are integrated into the CI/CD
pipelines, any change to an API can trigger automated validation, testing, and rollout to
development, staging, or production.

API gateways like Membrane support this approach by allowing APIs to be deployed directly
from OpenAPI descriptions and configuration files. That helps you keep implementation and
documentation in sync.

Deploying Membrane with OpenAPI in Docker

Membrane can be deployed using container images and included OpenAPI descriptions.
This allows API definitions to be version-controlled, tested, and rolled out as part of CI/CD
pipelines. In this approach, a Docker image encapsulates the Membrane API Gateway along
with OpenAPI documents, so that the API gateway configuration is immutable and tied to the
image version.

The API Gateway Handbook

 195

The Dockerfile below builds a custom Membrane image. Containers created from this image
include the API Gateway and an API configured from an OpenAPI document:

FROM predic8/membrane

USER root

RUN apt-get update && \
 apt-get install -y wget && \
 rm /opt/membrane/conf/*.yml

Download OpenAPI and place it conf/
RUN wget "https://github.com/predic8/rfq-
api/releases/latest/download/rfq-api-v1.oas.yml" -O
/opt/membrane/conf/rfq.oas.yml

USER membrane

Copy the configuration file into the container
COPY proxies.xml /opt/membrane/conf

EXPOSE 2000

ENTRYPOINT ["/opt/membrane/membrane.sh"]

Let’s break down what this Dockerfile does:

• Base Image: It starts from the official predic8/membrane image, which contains the
Membrane API Gateway runtime.

• Switch to Root (temporarily): It uses USER root to perform installation steps that
require root privileges.

• Install Tools & Cleanup: It updates package lists and installs wget (used to fetch the
OpenAPI spec). It also removes any default .yml configuration files in
/opt/membrane/conf (to avoid deploying unintended sample APIs).

• Download OpenAPI Spec: It fetches the latest OpenAPI specification file (in this
example, rfq-api-v1.oas.yml) from a GitHub release and places it into Membrane’s
conf directory. By downloading at build time, the image will always contain a specific
version of the API spec.

• Switch to Non-Root: It switches back to the membrane user (a non-root user provided by
the base image) for running the gateway. This is a security best practice to avoid running
the server as root inside the container.

• Add Custom Configuration: It copies in our custom proxies.xml configuration file into
the container’s conf directory.

• Expose Port: It exposes port 2000, which is the default port where Membrane will listen
(as configured in proxies.xml).

• Entrypoint: It sets the container entrypoint to run Membrane (membrane.sh) on startup.

The API Gateway Handbook

 196

The proxies.xml file (injected into the image via the COPY command) defines Membrane’s
configuration. This file should be kept under version control along with the OpenAPI
specification. In our simple setup, the proxies.xml is configured to automatically deploy all
OpenAPI definitions found in the conf folder:

<spring:beans ...>
 <router>
 <api port="2000">
 <openapi dir="conf" validateRequests="yes"/>
 </api>
 </router>
</spring:beans>

Now you can build the image and run a container from it:

docker build -t membrane:1 .
docker run -it -p 2000:2000 membrane:1

Once started, visit http://localhost:2000/api-docs in a browser to see the deployed API
documentation. Membrane provides a built-in documentation UI: a listing of all deployed
APIs and an integrated Swagger UI for each.

The API Gateway Handbook

 197

27.5 Best Practices for Membrane OpenAPI Deployments

When containerizing Membrane with OpenAPI specs, consider the following best practices to
improve reliability, security, and maintainability:

• Keep Config and Spec in Version Control
Store your proxies.xml and OpenAPI specification files in a Git repository. This way,
changes to the API contract are tracked and can undergo peer review just like code
changes. It also allows automation (via CI/CD) to rebuild and deploy the gateway
whenever the API spec or configuration changes, ensuring the gateway is always in sync
with the intended API contract.

• Pin Versions for Reproducibility
Avoid using floating versions like latest for base images or external downloads. In the
Dockerfile example, you might replace the GitHub latest URL with a specific release
version or tag for the OpenAPI file. Likewise, use a fixed version of the
predic8/membrane base image. Pinning dependencies ensures that your builds are
reproducible and prevents unexpected changes. (In production, you should always pin
your image versions to avoid undefined behavior.)

• Minimize the Image Footprint
Remove any build-time tools or caches to keep the image slim and secure. For example,
after using wget to download the spec, you can remove wget and clean up apt caches in
the same RUN layer. This reduces the attack surface and image size.

• Run as Non-Root
We already follow this by switching to the membrane user. Running the gateway as a non-
root user is a crucial security practice. If someone were to compromise the process, the
damage would be limited to the container and that user’s privileges, rather than granting
root access. Always ensure that any volume mounts or file paths needed by Membrane
(logs, etc.) are writable by the membrane (or chosen) user so the server runs smoothly
without elevated rights.

• Use Health Checks and Monitoring
When running Membrane in Docker (especially in orchestration environments like
Kubernetes), set up health endpoints or use Membrane’s status pages for liveness and
readiness probes. For example, the /api-doc (or /api-docs) endpoint itself could serve
as a simple health check.

• Plan for API Versioning
Over time, you may publish new versions of your API. It’s a good practice to version your
OpenAPI files (e.g., rfq-api-v2.oas.yml for a future v2). Membrane can host multiple
OpenAPI specs simultaneously, for instance, one container could include both v1 and v2
specs by placing both files in the conf directory (each spec with a different base path or
versioned URL). This allows the gateway to serve both versions in parallel, letting clients
migrate gradually. When doing so, update your proxies.xml to include all relevant
OpenAPI files (or use the dir="conf" approach as shown, which picks up any number of
specs in that folder).

• Automate Testing in CI/CD
Incorporate tests for your deployed API as part of the pipeline. For example, after building
the container, you might run it in a CI environment and execute a suite of contract tests or
sample requests against the exposed endpoints. This ensures that the combination of
Membrane + OpenAPI spec works as expected (e.g., all routes are functioning and
validation is correct). Additionally, use OpenAPI linters (like Spectral or openapi-cli)

The API Gateway Handbook

 198

during CI to catch issues in your spec (such as missing field descriptions or schema errors)
before they get deployed.

• Avoid bundling Secrets into the Image
Never bake credentials into Docker images. Instead, inject them at runtime using
environment variables, Docker secrets, or Kubernetes config maps. This helps avoid
accidental exposure and keeps your images portable and secure.

• Regularly update Dependencies
Keep an eye on updates for Membrane and for your API spec. Updating the
predic8/membrane base image to the latest stable version will bring in security patches
and new features (Membrane is actively maintained, so new releases may improve
OpenAPI support or fix bugs). Since your setup makes the gateway deployment part of
your CI/CD, rolling out a new Membrane version can be as simple as changing the base
image tag and rebuilding, which should be done periodically. The same goes for the
OpenAPI spec. If it evolves, coordinate updates to the spec with deployments of the
gateway image through your pipeline.

By following these practices, you ensure that deploying Membrane via Docker remains
robust, secure, and easy to manage as your APIs evolve. Your gateway becomes a part of
your application delivery, benefiting from the same versioning and testing discipline as the
rest of your code.

The API Gateway Handbook

 199

Storing OpenAPI Descriptions in Git

Managing OpenAPI documents in a source code repository unlocks powerful automation and
collaboration. By treating the OpenAPI YAML/JSON as code, you can integrate it into your
CI/CD pipeline seamlessly. For example, you might set up a GitHub Actions workflow or
GitLab CI job that triggers whenever the OpenAPI spec or proxies.xml is updated on the
main branch. This job could build and push a new Membrane Docker image and even deploy
it to a staging environment for testing.

Using Git also means you can leverage pull requests to review API changes: team members
can discuss and approve adjustments to the API contract before they go live, preventing
accidental breaking changes. Storing OpenAPI files in Git enables collaborative design,
automated deployments, and consistent rollouts across environments. Whenever a pull request
is merged, your pipeline can confidently deploy the updated specification to the API Gateway,
knowing that it has been reviewed and tested. This leads to fewer surprises in production and
a faster iteration cycle for API development.

Image: Container from versioned configuration and API description

Resources

Should I Set docker image version in docker-compose? (Stackoverflow)
https://stackoverflow.com/questions/70424052/should-i-set-docker-image-version-in-docker-
compose#:~:text=

The API Gateway Handbook

 200

28 Transformation and Message Manipulation
Message transformations in an API Gateway can vary from simple operations such as
modifying HTTP headers to complex conversions of JSON or XML payloads. These
transformations allow you to tailor requests and responses to meet specific application needs.

28.1 Manipulating HTTP Headers

Let's begin with a straightforward yet practical example: adding and removing HTTP header
fields.

Adding a HTTP Header

API gateways often add HTTP headers to outgoing messages to enable CORS or supply
credentials.

The example below demonstrates how to add a custom response header, X-Foo, with a value
of 42:

<api port="2000">
 <response>
 <setHeader name="X-Foo" value="42"/>
 <static>Ok</static>
 </response>
 <return/>
</api>

Since the <setHeader> element is placed inside the <response> block, the header is added to
outgoing responses.

To test this configuration, run the following command in your terminal:

curl -v http://localhost:2000

The response should contain the X-Foo header:

HTTP/1.1 200 Ok
Content-Type: text/plain
X-Foo: 42

Ok
	

The API Gateway Handbook

 201

28.2 Passing HTTP Headers to a Backend

HTTP headers can be forwarded from a gateway to an upstream backend, a technique widely
used for security purposes. For example, a token assigned to a request at the gateway can be
validated by the backend. The following example simulates this setup using two APIs.

Gateway API: Adding the Token

This API listens on port 2000. It adds a confidential token X-Token to outgoing requests and
forwards them to the backend running on port 3000:

<api port="2000">
 <request>
 <setHeader name="X-Token" value="abc123"/>
 </request>
 <target port="3000" host="localhost"/>
</api>

Backend API: Logging the Token

The second API, running on port 3000, acts as the backend service. It logs the received X-
Token header value and returns a 204 No Content status code:

<api name="backend" port="3000">
 <log message="Received: ${header['X-Token']}"/>
 <return statusCode="204"/>
</api>

Both APIs are deployed on the same gateway for demonstration purposes. Even though they
run on the same machine, the gateway routes the request through the operating system's
network stack and back, simulating a typical backend connection.

Testing the Configuration

To test this setup, send a request to port 2000:

curl http://localhost:2000

The log output in the Membrane console should be like this:

14:42:06 INFO 70 {proxyName=backend} - Received: abc123

The API Gateway Handbook

 202

While this is a simple example, many real-world scenarios use HTTP headers for
authentication or authorization. In a later section, we will explore how to validate headers for
specific values.

Note: Logging sensitive tokens is solely for demonstration. In a production environment,
ensure that sensitive information is never logged.

28.3 Computing Header or Property Values

You’re not limited to assigning constant strings to headers. You can also compute values
dynamically using an expression language such as Groovy, JSONPath, or Spring Expression
Language (SpEL). This makes your API configuration much more flexible and powerful.

The example below demonstrates how to set headers using calculations, the current date, and
JSON content from the request body:

<setHeader name="X-Number"
 value="${8 + 7}"
 language="Groovy"/>

<setHeader name="X-Date"
 value="${java.time.LocalDate.now()}"
 language="Groovy"/>

<setHeader name="X-Address"
 value="${$.address.zip} ${$.address.city}"
 language="Jsonpath"/>

<log message="Header: ${header}"/>

Now, call the API with the following request:

POST http://localhost:2000
Content-Type: application/json

{
 "address": {
 "city": "Berlin",
 "zip": "12111"
 }
}

The API Gateway Handbook

 203

You should see output like this in the log:

X-Number: 15
X-Date: 2025-02-28
X-Address: 12111 Berlin

This illustrates how headers can be computed at runtime, adapting to the request content or
environment.

28.4 Removing HTTP Headers

Setting headers is only half the story. Removing them can be just as important, especially
when it comes to privacy and security. Backend systems often include headers that leak
details like the server type, framework versions, or infrastructure setup. Attackers can use that
information to target known vulnerabilities.

To minimize this risk, API gateways let you control which headers are allowed to pass
through. You can use allowlists and blocklists to explicitly define what should be forwarded
and what should be stripped out.

Here’s an configuration that places an API in front of wikipedia.org and removes all
response headers except those that begin with Content or are named last-modified:

<api port="2000">
 <response>
 <headerFilter>
 <include>Content.*</include>
 <include>last-modified</include>
 <exclude>.*</exclude>
 </headerFilter>
 </response>
 <target url="https://www.wikipedia.org"/>
</api>

To see what headers Wikipedia normally returns, try this command:

curl -sS -D - https://www.wikipedia.org -o /dev/null

With the headerFilter in place, only the explicitly allowed headers (Content.* and last-
modified) are included in the response to the client. Everything else is dropped. This helps
keep your system’s internals private and reduces the attack surface.

The API Gateway Handbook

 204

28.5 Body Transformation

Just like headers, the body, or payload, of a message can also be transformed by an API
Gateway. This is helpful when integrating systems that expect different formats, need extra
data injected, or require simplified structures for frontend consumption.

Gateways provide a range of tools for transforming message bodies, including:

1. Format Converters
Automatically convert between formats, such as turning an XML payload into JSON or
the other way around.

2. Templates
Define templates with placeholders that are dynamically filled in using values from
headers, query parameters, or even expression language results.

3. Beautifiers and Formatters
Pretty-print JSON or XML content by adding indentation and line breaks. While this
doesn’t change the data, it makes it much more readable for humans during development,
debugging, or logging.

We’ll walk through each of these transformation techniques in the next sections using
practical, hands-on examples. By the end, you’ll be able to reshape API payloads to fit your
use case.

28.6 Format Transformation

API gateways can perform generic format transformations to convert a payload from one
representation to another. A common use case is converting between JSON and XML.

In the example below, the gateway transforms a JSON response into XML before returning it
to the client:

<api port="2000">
 <response>
 <json2Xml/>
 </response>
 <target url="https://api.predic8.de"/>
</api>

When you call this API with:

curl http://localhost:2000/shop/v2/products/7

The API Gateway Handbook

 205

You’ll receive an XML response like this:

<?xml version="1.0" encoding="UTF-
8"?><root><image_link>/shop/v2/products/7/image</image_link><p
rice>69.99</price><name>Gac-
Fruit</name><id>7</id><modified_at>2025-01-
29T12:30:00.026274Z</modified_at><vendors><name>Exotics Fruit
Lair
Ltd.</name><id>1</id><self_link>/shop/v2/vendors/1</self_link>
</vendors></root>

In the next section, we’ll look at techniques for making such responses more readable.

28.7 Make It Nice

Sometimes developers or other stakeholders need to examine an API’s response in a more
human-readable format. To achieve this, you can beautify JSON or XML messages before
returning them to the client. For instance, you can make the XML response from the previous
section more readable by adding a beautifier plugin:

<api port="2000">
 <response>
 <beautifier/>
 <json2Xml/>
 </response>
 <target url="https://api.predic8.de"/>
</api>

Note that the <beautifier> is placed above <json2Xml> because, in Membrane, the
response flow executes from the bottom to the top. When you invoke the endpoint again:

curl http://localhost:2000/shop/v2/products/7

you’ll receive a neatly formatted response:

<root>
 <image_link>/shop/v2/products/7/image</image_link>
 <price>69.99</price>
 <name>Gac-Fruit</name>
 <id>7</id>
</root>

Isn’t that pretty?

The Membrane beautifier works with both JSON and XML payloads, ensuring more readable
responses for debugging purposes.

The API Gateway Handbook

 206

28.8 Templates

Templates let you set the body of a message with dynamically generated content. They can
produce JSON, XML, or even legacy formats like SOAP.

Static Content

With static content, the message body is set with a fixed payload that never changes. In some
gateways, this feature is called setBody. Here’s an example where the response is replaced
with a constant JSON object:

<api port="2000">
 <response>
 <static contentType="application/json">
 {
 "place": "London"
 }
 </static>
 </response>
 <return/>
</api>

Dynamic rendered Content with Templates

Sometimes you need to build responses using dynamic values instead of fixed content. That’s
where template engines come into play. Many API gateways support standard engines like
Mustache or Velocity. Membrane uses the Groovy Template engine for this purpose.

In the following example, the gateway transforms an incoming XML payload into a JSON
response using a template.

The client sends an XML document that describes an article:

POST /
Host: localhost:2000
Content-Type: application/json

<article>
 <name>Lolly XXL</name>
 <color>green</color>
</article>

The API Gateway Handbook

 207

The corresponding API configuration performs three steps. In the request flow, the name and
color properties are extracted from the XML using XPath. The <return/> plugin reverses
the flow, and in the response flow the extracted properties are injected into a JSON template:

<api port="2000">
 <request>
 <setProperty name="name"
 value="${/article/name}"
 language="xpath"/>
 <setProperty name="color"
 value="${/article/color}"
 language="xpath"/>
 </request>
 <response>
 <template contentType="application/json" pretty="true">
 {
 "product": {
 "name": "${property.name}",
 "color": "${property.color}"
 }
 }
 </template>
 </response>
 <return/>
</api>

When invoked, the client receives a response like:

HTTP/1.1 200 Ok
Content-Type: application/json
Content-Length: 71

{
 "product": {
 "name": "Lolly XXL",
 "color": "green"
 }
}

Using templates like this allows your API to produce customized payloads on the fly, great
for format conversions and data mapping.

The API Gateway Handbook

 208

Templates with Loops and Conditions

Sometimes you need to render more complex structures, like lists or tables. For these cases,
templates can include loops and conditional logic. The example below shows how to iterate
over a list of HTTP headers and optionally include the value of a query parameter if it's
present:

<api port="2000">
 <request>
 <template contentType="text/plain">
 <![CDATA[

 Header:
 <% for(h in header.allHeaderFields) { %>
 <%= h.headerName %> : <%= h.value %>
 <% } %>

 <% if (param.foo) { %>
 Query param foo is: <%= param.foo %>
 <% } %>

]]>

 </template>
 </request>
 <return/>
</api>

To test this configuration, send a request to http://localhost:2000 with or without a foo
query parameter.

💡Sidenote: CDATA Section
The <![CDATA[...]]> block tells the XML parser to treat everything inside as plain text.
That’s important when your template includes characters like <, >, or &, which would
otherwise confuse the parser. Wrapping your template code in a CDATA section ensures that
the templating engine gets exactly what you wrote without interference from the surrounding
XML.

Resources

Groovy documentation on template engines
https://docs.groovy-lang.org/next/html/documentation/template-engines.html

The API Gateway Handbook

 209

29 Control Flow
Most of the API definitions are just in one direction. But you are not limited on that. Many
gateways support complex control flows with loops and conditions.

29.1 Conditions

The if plugin makes the execution of plugins conditional, depending on a test expression. It
can be applied during both the request and response phases.

Let’s illustrate this with a simple form of API protection. In some cases, implementing a full
authentication system is unnecessary, perhaps you're working with an internal API or a
prototype.

The configuration below demonstrates how to guard an endpoint using a simple API key
check:

<api port="2000">
 <request>
 <if test="header['X-Api-Key'] != 'Bibbidi-Bobbidi-Boo'">
 <static>No way!</static>
 <return statusCode="401"/>
 </if>
 </request>
 <static>Welcome!</static>
 <return/>
</api>

If the client sends the X-Api-Key header with the correct value (Bibbidi-Bobbidi-Boo), the
API responds with "Welcome!". Otherwise, it returns an error message with a 401
Unauthorized status code. To test this, you can use the following request:

GET http://localhost:2000
X-Api-Key: Bibbidi-Bobbidi-Boo

💡Sidenote: Lightweight protection only
Hardcoding secrets directly into configuration files is rarely a good idea. It may work for
demos or internal use, but it doesn’t scale and cannot be rotated dynamically. For anything
beyond basic use, consider proper authentication mechanisms such as token validation or API
key management, as discussed later in this book.

Choose and Case

One common use case for API gateways is translating backend error messages into a
consistent format that clients can reliably understand. This might mean converting backend

The API Gateway Handbook

 210

responses into Problem Details for HTTP APIs (RFC 7807), or turning them into SOAP faults
for legacy clients.

This example demonstrates how to use Membrane’s <choose> construct with multiple
<case> conditions to generate structured error responses based on the backend’s status code:

<api port="2000">
 <response>
 <choose>
 <case test="statusCode == 401 or statusCode == 403">
 <template contentType="application/problem+json">
 {
 "type": "https://membrane-api.io/problem/auth",
 "title": "Authentication Error"
 }
 </template>
 </case>
 <case test="statusCode >= 400 and statusCode < 500">
 <template contentType="application/problem+json">
 {
 "type": "https://membrane-api.io/problem/client",
 "title": "Client Error"
 }
 </template>
 </case>
 <case test="statusCode >= 500">
 <template contentType="application/problem+json">
 {
 "type": "https://membrane-api.io/problem/server",
 "title": "Server Error"
 }
 </template>
 </case>
 <otherwise>
 <static>What's happening!</static>
 </otherwise>
 </choose>
 </response>
 <target host="localhost" port="3000"/>
</api>

The <choose> block works like a switch statement. It evaluates each <case> in order and
executes the first one that matches. If no case applies, the <otherwise> block is triggered.

Resources

RFC 7807: Problem Details for HTTP APIs
https://datatracker.ietf.org/doc/html/rfc7807

The API Gateway Handbook

 211

30 API Orchestration
API orchestration is the combination of multiple backend services into a single, unified API.
This can simplify client logic, reduce API traffic, and hide internal complexity. It’s especially
helpful in scenarios like authentication flows, microservice aggregation, application
integration, and mobile clients where minimizing roundtrips is critical.

This chapter walks through three practical orchestration scenarios:

• Aggregating data from multiple backend APIs
• Handling backend authentication transparently for the client
• Processing and enriching RESTful resources during request handling

Whether you want to simplify your external interface or bridge the gap between legacy
systems and modern consumers, orchestration is a powerful tool to have in your API gateway
toolbox.

30.1 Aggregating Backend APIs

The first orchestration use case we’ll look at shows how a gateway can combine multiple
backend calls into a single, clean API. This hides internal complexity from the client,
simplifies frontend logic, and cuts down on the number of network roundtrips, something
especially useful for mobile apps and browsers.

Let’s walk through an example using the Open Library API. Imagine we want an endpoint
that returns both the title and the author of a book. The Open Library project offers public
APIs for exactly this kind of data, but not in a single call.

A call to:

GET https://openlibrary.org/books/OL29474405M.json

returns:

{
 "title": "So Long, and Thanks for All the Fish",
 "authors": [
 { "key": "/authors/OL272947A" }
]
 ...
}

This gives us the book’s title and a reference to the author, but not the author’s name. To
retrieve that, we need a second call:

The API Gateway Handbook

 212

https://openlibrary.org/authors/OL272947A.json

which returns:

{
 "name": "Douglas Adams"
 ..
}

To combine both steps into a single call from the client’s perspective, we can use the API
Gateway to orchestrate the calls.

Image: Orchestrating two backend calls into a single API (Rendered with Mermaid)

The diagram illustrates how the API Gateway:

• receives a single request from the client
• makes two backend calls: one for the book, one for the author
• then merges both responses into a unified result sent back to the client

The API Gateway Handbook

 213

Orchestrating with an API Gateway

Using orchestration, we can expose a single, convenient endpoint that performs multiple
backend calls under the hood.

Here’s a configuration example that fetches both book and author information from the Open
Library API:

<api port="8080">
 <path>/books/{olid}</path>

 <!-- 1. Get book details -->
 <call
url="https://openlibrary.org/books/${pathParam.olid}.json"
 />

 <setProperty name="authors"
 value="${$.authors}"
 language="jsonpath"/>
 <setProperty name="title"
 value="${$.title}"
 language="jsonpath"/>

 <!-- 2. Get author details -->
 <call
url="https://openlibrary.org${properties.authors[0]['key']}.js
on"
 />
 <setProperty name="author"
 value="${$.name}"
 language="jsonpath"/>

 <!-- Combine the results into a single JSON -->
 <template contentType="application/json" pretty="true">
 {
 "title": "${property.title}",
 "author": "${property.author}"
 }
 </template>

 <return/>
</api>

Now, a client can simply make this request:

GET http://localhost:8080/books/OL29474405M

The API Gateway Handbook

 214

And receive a clean, combined response:

{
 "title": "So Long, and Thanks for All the Fish",
 "author": "Douglas Adams"
}

This approach keeps client-side code minimal and clean. It also improves performance,
especially for mobile apps on slow or unreliable networks, by reducing the number of
roundtrips.

💡Sidenote: What’s happening with setProperty and JSONPath?
<setProperty> extracts a value from the backend responses using JSONPath. The results are
stored as named properties, which can then be reused across multiple steps, like inserting
values into templates.

30.2 Authentication for Backend API

In the next orchestration use case, the API Gateway handles authentication on behalf of the
client.

Imagine a scenario where a backend API requires a session cookie or token, but you’d prefer
to hide that complexity from your API users. You might even want to expose a completely
different authentication mechanism externally than what’s used internally.

With orchestration, the gateway can perform the necessary login steps in the background and
forward the appropriate credentials, keeping the client facing API simple, and easy to use.

Let’s look at a scenario involving three key components:

1. Protected Target API
Requires a valid session cookie for access.

2. Authentication Service
Issues the required session cookie.

3. Orchestration API
Logs into the authentication service, obtains the session cookie, and forwards it to the
protected API

The API Gateway Handbook

 215

The following diagram illustrates the interactions between these components:

Image: API Gateway authenticates on behalf of the client

Setting it Up with an API Gateway

All three components from this scenario can be simulated using Membrane API Gateway.

The API Gateway Handbook

 216

Here's how each component is configured:

1. Target API (Backend Simulation at port 3001)

This API checks whether a valid session cookie (SESSION=akj34) is present. If it is, the API
returns "Success!" Otherwise, it responds with an authentication error (401 Unauthorized):

<api port="3001">
 <if test="cookie.SESSION == 'akj34'">
 <static>Success!</static>
 <return/>
 </if>
 <static>Please log in!</static>
 <return statusCode="401"/>
</api>

2. Authentication Service (port 3000)

This API simulates a login endpoint that sets the required session cookie:

<api port="3000">
 <path>/login</path>
 <response>
 <setHeader name="Set-Cookie" value="SESSION=akj34" />
 </response>
 <return />
</api>

3. Orchestration API (port 2000)

The orchestration API acts as a facade. It first logs into the authentication API, extracts the
session cookie, and then forwards the request to the protected backend with the cookie:

<api port="2000">
 <request>

 <!-- Optional: Check authentication here -->

 <call url="http://localhost:3000/login" />
 <setHeader name="Cookie"
 value="${header['set-cookie']}"/>
 </request>
 <target url="http://localhost:3001"/>
</api>	

The API Gateway Handbook

 217

Securing the Orchestration API

In this simplified setup, the orchestration API itself is not protected. In real-world use cases,
you'd typically secure this external endpoint using API keys, JWTs, or OAuth2. This allows
you to offer a modern, secure interface to clients, even if the backend systems still rely on
outdated or session-based authentication.

30.3 Processing RESTful List Resources

The last orchestration scenario demonstrates how to navigate linked resources in a RESTful
API.

RESTful APIs often expose a list resource for each business object type. For example:

GET /products

This returns a list with short entries for each business object, typically containing only basic
information such as IDs and names:

{
 "products" : [
 { "id" : 1, "name" : "Bananas" },
 { "id" : 2, "name" : "Figs" },
 { "id" : 3, "name" : "Grapes" }
]
}

To get more details (such as the price), you must retrieve each individual resource using
another call, for example:

GET /products/3

Which returns:

{
 "id" : 3,
 "name" : "Grapes",
 "price" : 4.5,
 "image_link" : "/shop/v2/products/8/image"
}

Now suppose you're building an app that needs to show products with prices:

Bananas: 1.99
Figs: 2.40
Grapes: 5.80

The API Gateway Handbook

 218

To do that, the client would have to call /products, then fetch the full details of each item
one by one. That’s a lot of logic and roundtrips for a mobile or frontend app.

Instead, you can orchestrate these steps in the API Gateway, gathering all required data
server-side and returning a clean, merged response.

The diagram below illustrates the call sequence.

Image: Sequence of calls to get products and prices in a single API

The API Gateway Handbook

 219

Implementation with Membrane API Gateway

The configuration below uses Membrane API Gateway to fetch and merge product details into
one simplified JSON response:

<api port="2000">
 <request>
 <!-- Fetch list of products -->
 <call
url="https://api.predic8.de/shop/v2/products?limit=1000"/>
 <setProperty name="products"
 value="${$.products}"
 language="jsonpath"/>

 <!-- Iterate over each product -->
 <for in="property.products">
 <call
url="https://api.predic8.de/shop/v2/products/${properties.it['
id']}"/>
 <setProperty name="price"
 value="${$.price}"
 language="jsonpath"/>
 <!-- Add price to entry -->
 <groovy>
 property.it.price = property.price
 </groovy>
 </for>

 <!-- Render response with only product name and price -->
 <template contentType="application/json" pretty="true">
 <![CDATA[
 {
 "products": [
 <% property.products.eachWithIndex { p, idx -> %>
 {
 "name": "<%= p.name %>",
 "price": "<%= p.price %>"
 }<%= idx < property.products.size() - 1 ? ',' : ''
%>
 <% } %>
]
 }
]]>
 </template>
 </request>
 <return/>
</api>

The API Gateway Handbook

 220

Step-by-Step Explanation:

1. Fetching the Product List:

This retrieves up to 1000 products in one call:

<call
url="https://api.predic8.de/shop/v2/products?limit=1000"
/>

2. Extracting Product Data:

We store the list of products as a property using JSONPath:

<setProperty name="products"
 value="${$.products}"
 language="jsonpath"/>

3. Looping and Enriching:

We loop through each product and fetch detailed info:

<for in="property.products">
 <call
url="https://api.predic8.de/shop/v2/products/${properties.it
['id']}"
 />
 <setProperty name="price"
 value="${$.price}"
 language="jsonpath"/>
 <groovy>
 property.it.price = property.price
 </groovy>
</for>

The <for> block introduces a loop variable called it. The embedded Groovy script
assigns the fetched price to the current product entry.

The API Gateway Handbook

 221

4. Creating the Final JSON Response:

A Groovy-enhanced template renders the output as compact JSON:

<template contentType="application/json" pretty="true">
 <![CDATA[
 {
 "products": [
 <% property.products.eachWithIndex { p, idx -> %>
 {
 "name": "<%= p.name %>",
 "price": "<%= p.price %>"
 }<%= idx < property.products.size() - 1 ? ',' : '' %>
 <% } %>
]
 }
]]>
</template>

This logic ensures a valid JSON array without trailing commas.

💡 Sidenote: More about the Template Engine
Membrane uses Groovy's built-in template engine for dynamic message manipulation. If you
want to go deeper or customize templates beyond the basics, the official Groovy
documentation has you covered:

https://docs.groovy-lang.org/next/html/documentation/template-engines.html

Performance Hint: Looping in API Orchestration
If the product list is large, this orchestration may take several seconds to complete. Keep this
in mind when designing your application.

The API Gateway Handbook

 222

31 Secure Data in Transit with TLS
This section explores how to configure TLS (Transport Layer Security) for both encryption
and authentication in your API Gateway. You'll see practical examples that demonstrate how
to secure traffic on both ends of the gateway.

We’ll begin by examining the TLS connection from the gateway to the backend, followed
by the connection from the client to the gateway.

31.1 Reaching Backends over TLS

When an API Gateway connects to a backend over TLS, it acts as a TLS client. In this role,
the gateway initiates a secure connection, verifies the backend’s certificate, and establishes an
encrypted communication channel. This protects the data in transit ensuring confidentiality.

Image: TLS secured connection between gateway and backend

Securing backend connections over TLS typically involves:

• Managing trust stores for certificate validation
• Handling certificate revocation and renewal
• Optionally implementing mutual TLS (mTLS) to authenticate both sides of the

connection

By securing the connection between gateway and backend, sensitive data can be transmitted
safely, even across untrusted networks.

TLS to a Backend with public Certificate

Setting up TLS to a backend that uses a public certificate is straightforward. You’ve already
seen this kind of setup earlier in the book:

<api port="2000">
 <target url="https://api.predic8.de"/>
</api>

The API Gateway Handbook

 223

Here, simply using https:// in the backend URL tells the gateway to use TLS for the
outgoing connection.

Since this backend’s certificate is signed by a public certificate authority (CA), the gateway
can validate it against the trusted root certificates in its trust store.

Membrane, being based on Java, uses the Java platform truststore by default. This is
typically located at:

<JAVA_HOME>/lib/security/cacerts

You can add your own trusted certificates to this file using tools like keytool. Membrane will
automatically use them for outgoing TLS connections.

What is a truststore?
A truststore contains a collection of trusted root and intermediate certificates. When a server
presents a certificate, the truststore is used to check whether it was issued by a recognized and
trusted authority.

31.2 Termination of TLS Connections

TLS termination refers to the process where an incoming encrypted TLS connection is
decrypted by the API Gateway.

Most gateway functions require access to the unencrypted payload. Without decrypting the
traffic, the gateway would just see a blob of encrypted data and couldn’t do much with it.

Once decrypted, the gateway can inspect, transform, or route the request as needed.

Image: Termination of a TLS secured connection at the gateway

Handling TLS at the gateway offers several advantages:

• Enabling Gateway Features
Functions like logging, authentication, transformation, and validation only work if the
gateway can read the payload. Decrypting the traffic makes these features possible.

The API Gateway Handbook

 224

• Simplified Backend Configuration
If TLS is terminated at the gateway, backend services don’t need to manage certificates or
support HTTPS. That’s especially useful for legacy systems or internal services running
on private networks.

• Flexibility
The gateway can optionally re-establish a new encrypted TLS connection to the backend.
So the data is always encrypted in transit.

Naturally, TLS termination comes with a few responsibilities. The gateway must manage
sensitive assets like private keys and certificates. There’s also a slight processing overhead
from the encryption and decryption steps. But in most setups, the benefits, centralized control,
flexibility, and security, make TLS termination the better choice.

💡 Sidenote: TLS Passthrough?
In TLS passthrough mode, the gateway doesn't terminate TLS, it simply forwards the
encrypted connection to the backend. This can improve performance and simplify security in
some setups, but it limits what the gateway can do since it can't inspect or modify the payload.

Setting Up TLS Termination

The most challenging part of setting up TLS termination is obtaining or creating the necessary
certificates and keys. Once available, configuring Membrane, or other API gateways, is
straightforward.

Membrane includes sample certificates and keys for testing purposes. You can find them in
the folders:

• examples/security/tls-ssl/
• conf/

Sample files include:

• membrane-key.pem: the private key
• membrane.pem: the corresponding certificate

⚠ Important
Never use these sample certificates in production environments.

Examining the Certificate

Before configuring the gateway, you can inspect the certificate using the openssl tool
(available on most platforms):

openssl x509 -in membrane.pem -text

The API Gateway Handbook

 225

This command outputs details such as:

• Signature Algorithm: Used to sign the certificate
• Issuer & Subject: Who issued the certificate and who it was issued to
• Validity Period: Start and expiry dates
• Public Key Information: Key length and algorithm

An abbreviated excerpt might look like this:

Certificate:
 Data:
 Serial Number: 2004060569
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN=membrane
 Validity
 Not Before: Aug 5 10:41:09 2015 GMT
 Not After : Aug 2 10:41:09 2025 GMT
 Subject: CN=membrane
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Modulus:
 00:a9:2b:33:c3:16:51:…
 Exponent: 65537 (0x10001)
 Signature Value: 25:69:1a:46:d1:23:62

Note that this is a self-signed certificate, as the issuer and subject are identical.

Configuring TLS Termination

Once you have the key and certificate ready, you can configure TLS termination like this:

<api port="443">
 <ssl>
 <key>
 <private location="membrane-key.pem" />
 <certificate location="membrane.pem" />
 </key>
 </ssl>
 <log/>
 <target url="https://api.predic8.de"/>
</api>

This configuration terminates incoming TLS connections on port 443 using the provided
certificate and private key. It then logs the HTTP message in plain text and forwards the
request to the backend.

The API Gateway Handbook

 226

Testing the TLS Setup

The curl tool is very useful for debugging TLS connections. You can test your gateway
configuration with the following command:

curl -v -k https://localhost:443

Explanation of options:

• -v: Enables verbose mode, showing detailed information about the TLS handshake and
HTTP exchange

• -k: Skips certificate validation, helpful when using self-signed certificates during testing

The output provides a detailed view of the TLS handshake between the client and the
gateway, along with certificate information.

* Connected to localhost (::1) port 443
* (304) (OUT), TLS handshake, Client hello (1):
* (304) (IN), TLS handshake, Server hello (2):
* (304) (IN), TLS handshake, Unknown (8):
* (304) (IN), TLS handshake, Certificate (11):
* (304) (IN), TLS handshake, CERT verify (15):
* (304) (IN), TLS handshake, Finished (20):
* (304) (OUT), TLS handshake, Finished (20):
* SSL connection using TLSv1.3 / AEAD-CHACHA20-POLY1305-SHA256
/ [blank] / UNDEF
* ALPN: server did not agree on a protocol. Uses default.
* Server certificate:
* subject: CN=membrane
* start date: Aug 5 10:41:09 2015 GMT
* expire date: Aug 2 10:41:09 2025 GMT
* issuer: CN=membrane
* SSL certificate verify result: self signed certificate
(18), continuing anyway.
* using HTTP/1.x
> GET / HTTP/1.1
> Host: localhost
> User-Agent: curl/8.7.1
>
< HTTP/1.1 200 Ok
< Content-Type: application/json

This confirms that the TLS handshake was completed successfully.

In this example, TLS termination is configured for a single API. For instructions on applying
TLS settings across multiple APIs or connectors, see the samples in the
examples/security/ssl-tls folder of the Membrane distribution.

The API Gateway Handbook

 227

⚠ Security Warning!
Always replace the sample certificates with valid production certificates in live environments.

Forwarding TLS Connections Without Decryption

Sometimes, traffic is too sensitive for even the API gateway to inspect. In such cases,
Membrane can forward TLS connections without decrypting them:

<sslProxy host="verysecretbackend.predic8.de" port="443">
 <target host="verysecretbackend.predic8.de" port="443"/>
</sslProxy>

Membrane uses the SNI (Server Name Indication) from the client’s TLS handshake to decide
where to forward the connection. If the SNI matches, the connection is passed through
untouched—no decryption, no inspection, no logging.

This turns Membrane into a layer 4 (TCP) proxy. Since it doesn’t terminate TLS, it doesn’t
need a certificate or private key. The encrypted data is only decrypted at the backend.

Tip: Sharing Ports
You can share port 443 with other proxies (e.g., <api>) handling different hostnames.

31.3 Debugging TLS Connectivity

Setting up TLS for the first time can feel like opening a door to the internet—and sometimes,
the internet knocks back.

When configuring TLS in Membrane, especially during initial rollout or certificate changes,
it’s helpful to enable detailed error logging:

<ssl showSSLExceptions="true">

This setting reveals what’s really happening under the hood. And trust us, there’s a lot going
on.

What Happens When You Open Port 443?

The moment you expose port 443 to the public internet, without IP restrictions, you’ll start
receiving inbound connections. Some are harmless. Some are curious. Some are… not.

The API Gateway Handbook

 228

Here’s what you might see:

• Statistical scanners collecting data for research or monitoring
• Security researchers probing your TLS version (possibly for a thesis)
• Automated bots looking for known vulnerabilities (e.g., in OpenSSL—even though

Membrane doesn’t use it)
• Generic exploit attempts targeting common platforms like WordPress
• Novel attacks maybe aimed at Java-based services or Membrane itself

All of this generates noise. Lots of it. And by default, Membrane hides some of it with
showSSLExceptions="false". Turning it on helps you see what’s really hitting your gateway.

Why It Matters

• You’ll catch misconfigured clients trying to connect with outdated TLS versions.
• You’ll see malformed handshakes that might indicate scanning or probing.
• You’ll be able to distinguish between harmless background traffic and actual threats.

The API Gateway Handbook

 229

32 Access Control Lists
A simple yet effective way to protect an API is by limiting access to specific IP addresses or
ranges using Access Control Lists (ACLs). ACLs restrict which clients can interact with an
API, providing an additional layer of security, especially in controlled network environments.

In Membrane, ACLs are defined in external XML files. Here’s an example (acl.xml):

<accessControl>
 <resource uri="*">
 <clients>
 <ip>127.0.*</ip>
 <ip>192.168.2.213</ip>
 </clients>
 </resource>
</accessControl>

This configuration applies to all API endpoints (denoted by * in the uri attribute) and allows
only clients from:

• The local range 127.0.*
• The specific IP 192.168.2.213

To apply this ACL to an API, include the ACL file in your configuration:

<api port="2000">
 <accessControl file="./acl.xml" />
 <target url="https://api.predic8.de"/>
</api>

While IP addresses can be spoofed, ACLs still serve as a useful first line of defense,
especially when used to restrict access to internal services or known clients. For stronger
protection, ACLs are often combined with other security mechanisms such as API keys,
OAuth2, or JWT authentication, forming a multi-layered security strategy.

Resources

ACL Configuration Examples
MEMBRANE_HOME/examples/security/access-control-list

The API Gateway Handbook

 230

33 Content Protection
Attackers can exploit subtle quirks and dangerous features in data formats like JSON, XML,
or GraphQL to trigger unexpected behavior or even remote code execution.

That’s where content protection comes in. It helps block potentially harmful input before it
reaches backend services. The goal isn’t to understand the full meaning of a request but to
enforce structural safety and avoid known attack vectors, making exploitation harder or even
impossible.

Since the basic requirements for content protection are fairly straightforward, most API
gateways offer similar functionality. The main differences usually lie in configuration syntax
and naming conventions rather than in the actual capabilities.

33.1 JSON Protection

Most API gateways offer built-in JSON protection features that help prevent malformed or
malicious payloads from reaching your backend services.

In Membrane, enabling JSON protection is as simple as including the <jsonProtection />
element in an API configuration:

<api port="2000">
 <jsonProtection />
 <target url="https://api.predic8.de"/>
</api>

When a request like the following is received:

POST http://localhost:2000
Content-Type: application/json

{
 "price": 10,
 "price": -1
}

The API Gateway Handbook

 231

... the JSON protection mechanism detects the duplicate price field and returns an error
message:

HTTP/1.1 400 Bad Request
Content-Length: 474
Content-Type: application/problem+json

{
 "title": "JSON Protection Violation",
 "type": "https://membrane-api.io/problems/user",
 "detail": "Duplicate field 'price' at line: 3"
}

Customizing JSON Protection

The default settings offer strong protection for most use cases. However, if you need stricter
limits, or need to loosen restrictions for valid large payloads, you can configure the
parameters individually:

<jsonProtection maxTokens="15"
 maxSize="110"
 maxDepth="3"
 maxStringLength="5"
 maxKeyLength="10"
 maxObjectSize="3"
 maxArraySize="3" />

Resources

JSON Protection Examples and Configuration patterns
Check the examples/security/json-protection directory in the Membrane distribution.

jsonProtection Reference
https://www.membrane-api.io/docs/current/jsonProtection.html

The API Gateway Handbook

 232

33.2 XML Protection

Just like JSON, XML payloads can also be exploited to overwhelm or bypass backend
systems. To guard against this, Membrane provides XML protection features that are easy to
apply with a simple configuration.

For example, to enable XML protection for an API:

<api port="2000">
 <xmlProtection/>
 …
</api>

This enables default protection settings that block common XML threats such as excessive
attributes or malicious entity declarations.

You can also customize individual checks as needed:

<xmlProtection maxAttributeCount="10"
 maxElementNameLength="50"
 removeDTD="yes"/>

Resources

xmlProtection Reference
https://www.membrane-api.io/docs/current/xmlProtection.html

The API Gateway Handbook

 233

33.3 GraphQL Protection

GraphQL offers great flexibility, but that flexibility can be a double-edged sword when it
comes to security. To help mitigate risks, Membrane includes a GraphQL protection feature
that validates incoming queries and mutations against the GraphQL specification.

To enable it, simply include the following element in the configuration:

<api port="2000">
 <graphQLProtection/>
 …
</api>

This activates structural validation and enforces limits such as maximum query depth,
helping prevent abuse through overly complex or deeply nested requests.

Resources

For configuration samples, see the examples/security/graphql-validation folder the
Membrane distribution.

graphQLProtection Reference
https://www.membrane-api.io/docs/current/graphQLProtection.html

The API Gateway Handbook

 234

34 Basic Authentication
Basic Authentication is almost as old as the web itself. It’s simple and widely supported, but
it comes with some limitations. Credentials are sent in a Base64-encoded format, which
means that without encryption, anyone intercepting the traffic could read the username and
password as easily as reading an open book.

That said, when used together with TLS, Basic Authentication becomes a lightweight and
practical solution. While it doesn’t offer the same level of protection as API keys or JWT, it
still has its place, especially in internal communication, or simple use cases where stronger
mechanisms would be overkill.

How it Works

Basic Authentication sends credentials using the Authorization header, along with the
keyword Basic. For example:

GET http://localhost:2000
Authorization: Basic ZnJlZG86YWJjMTIz

Curious what's inside that string? You can decode it with (command my vary):

echo ZnJlZG86YWJjMTIz | base64 -d

And get something like:

fredo:abc123%

This shows that Base64 is not encryption, it’s just encoding. Think of it as putting your
credentials in a paper bag rather than a locked box. This is why TLS is mandatory when
using Basic Auth over the open internet.

If you're experimenting, you can also use an online decoder like:

https://emn178.github.io/online-tools/base64_decode.html

Image: Decoding a base64-encoded basic auth string online

The API Gateway Handbook

 235

⚠ Security Warning
Never decode production credentials using online tools. It’s like handing your house keys to
random strangers.

Once the request reaches the server or API Gateway, the Authorization header is decoded,
and the credentials are verified. Because Basic Authentication is stateless, the client needs to
send the same header on every request. There's no session or token involved, just repeat,
repeat, repeat.

Setting up Basic Authentication

The following API configuration shows how to protect an endpoint using Basic
Authentication. Clients must provide a valid username and password to access the backend
service:

<api port="2001" name="Fruitshop">
 <basicAuthentication>
 <user username="fredo" password="abc123"/>
 <user username="kate" password="flower25"/>
 <user username="john"
 password="6OO0ThN.5$ARC/SklqDFfI0hEa7A.A0f0h..."/>
 </basicAuthentication>
 <target url="https://api.predic8.de"/>
</api>

In this example:

• fredo and kate have their passwords defined in plaintext.
• john uses a hashed password. This digest ensures that even if someone views the

configuration file, the actual password remains concealed.

🔐 Security Tip: Storing hashs
In production environments, always use hashed passwords and store them securely, plaintext
credentials should be avoided.

Managing Users in Files and Databases

Defining users directly in the configuration file is the easiest way to get started with Basic
Authentication. But this approach has some clear limitations:

• Configuration Reload
Every time a user is added or removed, the API Gateway configuration needs to be
reloaded.

• Scalability
Managing large numbers of users in a single config file becomes unwieldy.

The API Gateway Handbook

 236

• Integration Limitations:
Storing credentials in the config makes it hard to integrate with external identity systems
or user management tools.

To address these limitations, Membrane supports alternative user stores, including:

• Standard .htpasswd files
• Integration with SQL databases

This allows you to manage users more flexibly, automate updates, and better align with
existing authentication infrastructure.

How to Generate a .htpasswd File

.htpasswd files are a pseudo-standard for storing usernames and hashed passwords,
commonly used for Basic Authentication. You can generate entries using the htpasswd tool,
which is part of the Apache HTTP Server utilities.

To create a new file and add the first user:

htpasswd -c .htpasswd alice

To add another user later:

htpasswd .htpasswd bob

The resulting file might look like this:

alice:$apr1$zGXp9.Px$uLogsgPwJoMVIWtA0Uv76.
bob:$apr1$ciDjPlh3$S2qaMyAl43SVswoCnscNz/

Resources
You can find working examples in the Membrane distribution:

1. examples/security/basic-auth/simple – using .htpasswd
2. examples/security/basic-auth/database – using a database as the user store

The API Gateway Handbook

 237

35 API Keys
Membrane offers support for API key authentication, allowing you to protect endpoints with
minimal effort. In the example below, API keys are stored directly in the configuration file
and expected to be transmitted via an HTTP header.

Here, API key validation is configured globally using the global section, so it automatically
applies to all defined APIs:

<router>

 <global>
 <apiKey>
 <keys>
 <secret value="aed8bcc4-7c83-44d5-8789-21e24ac873" />
 <secret value="abc123" />
 </keys>
 <headerExtractor name="X-Api-Key"/>
 </apiKey>
 </global>

 <api port="2000">
 <target url="https://api.predic8.de"/>
 </api>

</router>

To authenticate, clients must include a valid API key in the X-Api-Key header:

GET http://localhost:2000
X-Api-Key: abc123

If the provided key does not match any of the configured secrets, the request is rejected with a
401 Unauthorized response.

This global approach ensures consistent enforcement of API key authentication across all
endpoints, without needing to duplicate configuration for each API.

API Key Extraction from a Query Parameter

API keys can be passed through different parts of a client’s request, such as HTTP headers,
query parameters, or even the message body. Membrane supports flexible, pluggable
extractors that allow you to retrieve the key from different locations.

The API Gateway Handbook

 238

To extract the key from the query string, use:

<queryParamExtractor name="api-key"/>

This allows clients to include the key directly in the URL:

GET /products?api-key=abc123

While this method is convenient, it is generally not recommended for sensitive data.

⚠ Security Warning: API Keys in Query Strings
Passing sensitive data in the query string is generally discouraged. Query strings are often
logged by proxies, gateways, and backend servers—potentially exposing the API key.

Extracting from an HTTP Header

A more common and secure approach is to send the API key via an HTTP header. You can
extract it using:

<headerExtractor name="X-Api-Key"/>

This method is better aligned with security best practices and avoids the risks associated with
query string logging.

Extracting API Keys from JSON, XML, and beyond

For even more flexibility, Membrane supports expression-based extractors. These let you
extract keys from almost anywhere in the request, including JSON or XML payloads.

To extract a key from a JSON body using JSONPath, use:

<expressionExtractor expression="$.key"
 language="jsonpath"/>

In this case, the client includes the key in a JSON payload:

POST http://localhost:2000
Content-Type: application/json

{
 "key": "abc123"
}

🔐 Tip: Regardless of the method, always consider the risk of exposure and apply encryption
(TLS) and logging controls to protect API keys in transit.

The API Gateway Handbook

 239

35.1 Storing API Keys in a relational Database

Managing API keys directly in configuration files works fine for small setups, but it doesn’t
scale well. As soon as you need to rotate keys, revoke access, or support dynamic
provisioning, a database-backed key store becomes the better choice.

With Membrane, you can store and manage API keys in a relational database like
PostgreSQL. This lets you decouple authentication data from configuration and makes
automation much easier.

The example below shows how to configure Membrane to use PostgreSQL. Spring’s XML
syntax is used to define the data source and link it to Membrane’s API key module:

<spring:beans ...>

 <spring:bean id="ds"
 class="org.apache.commons.dbcp2.BasicDataSource">
 <spring:property name="driverClassName"
 value="org.postgresql.Driver"/>
 <spring:property name="url"
 value="jdbc:postgresql://localhost:5432/postgres"/>
 <spring:property name="username"
 value="user"/>
 <spring:property name="password"
 value="password"/>
 </spring:bean>

 <router>

 <api port="2000">
 <apiKey>
 <databaseApiKeyStore datasource="ds">
 <keyTable>key</keyTable>
 <scopeTable>scope</scopeTable>
 </databaseApiKeyStore>
 <headerExtractor />
 </apiKey>
 <target url="https://api.predic8.de"/>
 </api>

 </router>

</spring:beans>

The configuration above connects to a local PostgreSQL database and uses two tables:

• key for storing the actual API keys
• scope for defining the scopes associated with each key

If these tables don’t exist yet, Membrane will create them for you automatically.

The API Gateway Handbook

 240

MongoDB API Key Store

In addition to relational databases, Membrane also supports storing API keys in a MongoDB
database. This is especially helpful when scaling to a large number of users or distributed
gateway instances.

The configuration below shows how to use a MongoDB collection as the backing store for
API keys:

<apiKey>
 <mongoDBApiKeyStore connection="mongodb://localhost:27017/"
 database="apiKeyDB"
 collection="apikey" />
 <headerExtractor />
</apiKey>

To populate the collection with example API keys and associated scopes, you can run the
following command using mongosh:

mongosh --eval "use('apiKeyDB'); db.apikey.insertMany([
{ id: '345%FSe3', scopes: ['read', 'write'] },
{ id: '3c7f6c34', scopes: ['read'] },
{ id: '343265FA', scopes: ['read', 'admin'] },
{ id: 'flower2025', scopes: ['read', 'write'] }]);"

The scopes are important for role based access control.

35.2 Role-based Access Control (RBAC)

API keys in Membrane can also be used for role-based access control by assigning scopes to
each key. A scope acts like a role or permission tag. Let’s walk through how this works in
practice using a simple file-based setup.

With API keys it is even possible to realize role based access control. For this example we are
using a file to store the keys together with scopes. Think of a scope as a kind of role.

Storing API Keys with Scopes

The following keys.txt file contains API keys and their associated scopes:

abc123: admin, finance
7a26cae9-ed29-40b3-bc99-5b1914bb8498: read, write

Here, abc123 has the roles admin and finance, while the UUID key is assigned the finer-
grained read and write scopes.

The API Gateway Handbook

 241

To make this file accessible across multiple APIs, define the API key store outside the
<router> element:

<spring:beans ...>

 <apiKeyFileStore location="./keys.txt" />

 <router>

 <api …>
 …
 </api>

 <api …>
 …
 </api>

 </router>

</spring:beans>

Enforcing Scopes

In the API configuration below, the gateway checks whether the client possesses the admin
scope. If not, it rejects the request with a 403 Forbidden:

<api port="2000">

 <apiKey>
 <headerExtractor name="X-Api-Key" />
 </apiKey>

 <if test="!hasScope('admin')">
 <static>Only admins!</static>
 <return statusCode="403"/>
 </if>

 <setHeader name="X-Scopes" value="${scopes()}"/>
 <target host="localhost" port="3000" />
</api>

This configuration does two things:

• Enforces that only clients with the admin scope are allowed to access the endpoint.
• Forwards the list of granted scopes to the backend in a custom X-Scopes HTTP header.

The API Gateway Handbook

 242

Backend Awareness of Scopes

The backend service (on port 3000) simply logs the incoming scopes. But in a real-world
scenario, it could inspect the X-Scopes header to perform fine-grained authorization:

<api port="3000" name="backend">
 <request>
 <log message="Scopes: ${headers['X-Scopes']}"/>
 </request>
 <return />
</api>

🔒 Security Hint: Protecting the backend
Make sure the backend is not directly accessible. Use TLS client certificates, firewall rules,
or trusted IP allowlists to ensure only the gateway can reach it.

35.3 Best Practices for API Keys and Roles

API keys are a simple yet effective way to secure APIs. And while they don’t offer the fine-
grained control of OAuth2 or JWTs, they’re often good enough, as long as you follow a few
best practices:

• Always use TLS.
API keys should never travel over plain HTTP.

• Don't hardcode keys in the configuration.
Instead, load them from environment variables, external files, or a database-backed store.
This makes your setup more secure and easier to manage.

• Never pass API keys to the backend.
Keep them at the gateway. If the backend needs to know the client’s access rights, pass
sanitized metadata, like an X-Scopes or X-Role header, instead.

• Use long, unguessable keys.
A randomly generated UUID is a good choice. Avoid short or predictable values like
test123.

🔐Security Tip: API Key Rotation
Rotate your API keys regularly, especially for public or long-lived clients. It’s an easy way to
limit the damage if a key ever gets leaked.

The API Gateway Handbook

 243

36 JSON Web Tokens
JSON Web Tokens (JWTs) are widely used in modern API security. And Membrane API
Gateway is ready to work with them on both ends of the equation.

It can act as:

• a JWT issuer, generating tokens for clients after successful authentication
• a JWT verifier, checking incoming tokens before forwarding requests to backend

services

The next two sections will walk through a complete bearer token flow (as introduced in
chapter 14.2), demonstrating both roles using Membrane. In general, Membrane can be used
for both roles, or either one of them.

36.1 Issuing JWTs

Membrane can be setup as a JWT issuer, allowing it to generate signed tokens for clients.

A more complex example will be shown in the next section.

Image: The first steps of the Bearer process Membrane will realize here

Since JWTs carry a cryptographic signature, you’ll need a secret key to sign them. For
stronger security, it’s best to use an asymmetric RSA key pair.

Step 1: Generate a Private Key

You can generate a new RSA private key in JWK format using Membrane’s built-in tooling:

• On Windows:

membrane.cmd generate-jwk -o demo.jwk

• On Linux:

membrane.sh generate-jwk -o demo.jwk

The API Gateway Handbook

 244

This creates a file called demo.jwk containing your private key. Keep this file secret! It’s the
foundation of your token security.

Step 2: Configure Membrane to Issue Tokens

Place the demo.jwk file in the same directory as your proxies.xml file. Then, configure
Membrane like this:

<api port="2000" name="Token Server">
 <path>/token</path>
 <request>
 <template>
 {
 "sub": "user@predic8.de",
 "aud": "order"
 }
 </template>
 <jwtSign>
 <jwk location="jwk.json"/>
 </jwtSign>
 </request>
 <return />
</api>

Now, when you send a request like:

GET /token

Membrane will return a freshly minted JWT, for example:

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6IjhubHFiNXJ1dGJyYT
k5NzV1NWYwbzM3NTJoIn0.eyJzdWIiOiJ1c2VyQHByZWRpYzguZGUiLCJhdWQi
OiJvcmRlciIsImlhdCI6MTc1MDkzMDUyOSwiZXhwIjoxNzUwOTMwODI5LCJuYm
YiOjE3NTA5MzA0MDl9.WO9ZnO83yjBsefzTAkdLUDxW4pRXNNHFZog6JZNVFYl
y6zUmMn1dYIMy79sBdFBPQ1KA5q6Vy3iVyFAYWSXo6Emb9MGwl5DGL2WlCifrg
UGRJWhrPhtoImYXkj10HWOScEBAZWICC1esJbCTbxGgQr2X1MZk4h0as700Ou0
WSNo-Cyxi2798V69oYwF0i1ALJsVEtTXYOw3k3PU3sMa_g3i3JaUT7I9lnNj5D
p1Wc7B5fpilstVGP1Tt8eTlHhxsafCAArMjBIdhXYUf2KEQp5eKLla-51hKsPr
C3zBnybofqnxtJuOQDqemKYX2aDmf8RUyxledJnnAyWQa90ZGmg

Congratulations, you have successfully issued your first JWT!

The API Gateway Handbook

 245

When decoded and pretty printed, it looks like this:

{"alg":"RS256","kid":"membrane"}
.
{
 "sub":"user@predic8.de",
 "aud":"order",
 "iat":1750930529,
 "exp":1750930829,
 "nbf":1750930409
}
.
<signature>

where <signature> is binary data.

The token’s payload was formed from the configuration template (sub and aud claims) as
well as dynamically added timestamps (iat , exp and nbf claims).

Every second, you will therefore get another token.

Of course, each token will look slightly different depending on the time it was issued and the
claims it contains. Since the signature is based on both the header and payload, even small
changes will result in a different signature.

36.2 Protecting the Token Generation Process

In practice, handing out tokens to anyone who calls your token endpoint is not a great idea. To
secure your token generation process, you should combine it with an additional layer of
authentication, such as API keys.

One simple approach is to use the API keys stored in the file keys.txt as described in
chapter 35.

Of course, ‘static’ tokens with the payload {"sub": "user@predic8.de", aud":
"order" } are only so much fun. We therefore configure the payload to include a
"scope" claim based on which API key was used to get the token.

Alternatively, you could even use API Orchestration to get user information from a remote
Identity and Access Management (IAM) API and place it into the template.

The API Gateway Handbook

 246

Here's how you can configure Membrane to require an API key before issuing a token:

<api port="2000" name="Token Server">
 <apiKey required="true">
 <apiKeyFileStore location="demo-keys.txt" />
 <headerExtractor />
 </apiKey>
 <request>
 <setProperty name="scopes" value="${scopes()}"/>
 <template>
 {
 "sub": "user@example.com",
 "aud": "order",
 "scope": "${property.scopes}"
 }
 </template>
 <jwtSign>
 <jwk location="jwk.json"/>
 </jwtSign>
 </request>
 <return />
</api>

This configuration ensures that:

• Only callers presenting a valid API key (from keys.txt) will receive a token.
• The token’s payload will include a scope claim, such as:

"scope": ["read", "write"]

or

"scope": ["admin", "finance"]

depending on the API key used.

This setup already gives you a lightweight token server, which is sufficient for many API use
cases.

!"#$%Sidenote: Need to scale?
If your requirements grow, you can easily swap out Membrane’s token generation with a
more full-featured identity provider like Keycloak, Microsoft Entra ID, AWS Cognito, or
others.

The API Gateway Handbook

 247

36.3 Verifying JWTs

Membrane can also be set up as a JWT verifier, sitting between the client and the API to
strengthen your overall security posture.

Verifying tokens at the API gateway is strongly recommended. Why? Because it’s easier to
verify, tweak, and upgrade one gateway than to manage token verification logic across
dozens, or hundreds, of APIs.

Image: The last steps from the Bearer process Membrane will realize here

Step 1: Set Up a Demo API

Let’s start with a simple backend API that returns protected content:

<api port="3000" name="Demo API">
 <template>
 {
 "content": "Protected content!"
 }
 </template>
 <return />
</api>

Step 2: Protect the API with Membrane

Now, place Membrane in front of the API and configure it to verify JWTs:

<api port="4000" name="Secured Access to Demo API">
 <jwtAuth expectedAud="order">
 <jwks>
 <jwk location="jwk.json" />
 </jwks>
 </jwtAuth>
 <target host="localhost" port="3000" />
</api>

The API Gateway Handbook

 248

This setup ensures that only requests with valid JWTs—signed with the correct key and
intended for the "order" audience—are forwarded to the backend.

⚠ Security Tip:
In production, make sure the backend API (localhost:3000) is not directly accessible. All
traffic should go through the gateway.

Step 3: Test the Setup

Send a request with a valid token:

curl -H "Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI
1NiIsImtpZCI6IjhubHFiNXJ1dGJyYTk5NzV1NWYwbzM3NTJoIn0.eyJzdWIiO
iJ1c2VyQHByZWRpYzguZGUiLCJhdWQiOiJvcmRlciIsImlhdCI6MTc1MDkzMDU
yOSwiZXhwIjoxNzUwOTMwODI5LCJuYmYiOjE3NTA5MzA0MDl9.WO9ZnO83yjBs
efzTAkdLUDxW4pRXNNHFZog6JZNVFYly6zUmMn1dYIMy79sBdFBPQ1KA5q6Vy3
iVyFAYWSXo6Emb9MGwl5DGL2WlCifrgUGRJWhrPhtoImYXkj10HWOScEBAZWIC
C1esJbCTbxGgQr2X1MZk4h0as700Ou0WSNo-Cyxi2798V69oYwF0i1ALJsVEtT
XYOw3k3PU3sMa_g3i3JaUT7I9lnNj5Dp1Wc7B5fpilstVGP1Tt8eTlHhxsafCA
ArMjBIdhXYUf2KEQp5eKLla-51hKsPrC3zBnybofqnxtJuOQDqemKYX2aDmf8R
uyxledJnnAyWQa90ZGmg" localhost:4000

If the token is valid and unexpired, you’ll get:

{
 "content": "Protected content!"
}

But repeating the same request 5 minutes later, you’ll receive a “HTTP/1.1 400 Bad Request”:

{
 "title" : "Security error.",
 "type" : "https://membrane-api.io/problems/security",
 "detail" : "JWT validation failed.",
 …
}

Your token has expired. You can either request a new one from the issuer or increase the
token’s validity period, though shorter lifespans are generally safer.

The API Gateway Handbook

 249

36.4 JWT Best Practices

The aud Claim

In the setup described above, the configuration files of both the JWT issuer and the JWT
verifier must align.

On the issuer side, the configuration includes

 "aud": "order"

On the verifier side, Membrane is configured with:

 <jwtAuth expectedAud="order">

If these values don’t match, token verification will fail, and the token will be rejected.

In a small deployment—like this 1:1 demo with one issuer and one verifier—this constraint
might seem like a minor detail. But as your architecture scales (think 1 issuer and 1000
verifiers), consistency in the aud claim becomes critical. It ensures that tokens are only
accepted by the services they were intended for, reducing the risk of misuse or accidental
exposure.

Don’t share the private Key

In the previous chapters, 36.1 (issuer) and 36.3 (verifier), we used the same RSA private key
file for simplicity. But in practice, you should never share the private key file between
systems. The private key should remain on the issuer’s machine.

Instead, convert the private key into a public key and use that for verification.

The private key should remain securely stored on the issuer’s machine. The verifier only
needs the public part of the key to verify tokens. This separation ensures that even if the
verifier’s configuration is leaked, no sensitive signing material is exposed: Itt only contains
public data.

Using JWT Claims as HTTP Headers

In some scenarios, it’s helpful to extract specific claims from a JWT and forward them as
HTTP headers. This allows downstream services to make decisions based on identity or roles
without needing to parse the token themselves.

Let’s say you want to forward the sub (subject) claim as a header.

The API Gateway Handbook

 250

Here’s how you can do it in Membrane:

<jwtAuth expectedAud="order">
 <jwks>
 <jwk location="jwk.json" />
 </jwks>
</jwtAuth>
<setHeader name="X-Sub" value="${property.jwt.sub}" />
<log/>

This configuration does two things:

1. Verifies the JWT using the public key in jwk.json and checks that the aud claim matches
"order".

2. Extracts the sub claim from the token and sets it as an HTTP header named X-Sub.

When a request is processed, you’ll see something like this in the log:

X-Sub: user@predic8.de

This approach is especially useful when your backend services are not JWT-aware but still
need to know who the user is.

⚠ Security Tip:
You still need to ensure that headers like X-Sub cannot be forged by clients.

The API Gateway Handbook

 251

37 OAuth2 and OpenID Connect
APIs are everywhere, and so are the people and systems trying to access them. Whether it’s a
mobile app, a browser, or a backend service, they all need a way to prove who they are and
what they’re allowed to do. That’s where OAuth2 and OpenID Connect (OIDC) come in.

These protocols provide a standardized way to handle authentication and authorization across
distributed systems. Instead of reinventing the wheel for every service, you can rely on a well-
established framework that’s secure, flexible, and widely supported.

And for API Gateways? OAuth2 and OIDC are essential features. An API Gateway typically
supports two main use cases:

1. Token Verification
The gateway checks access tokens on incoming API requests. Together with the token
format, this is technically outside the OAuth2/OIDC spec, but it’s a good common
practice to centralize token verification at the gateway.

2. Token Acquisition (Web Context)
In browser-based scenarios, the gateway can handle the OAuth2 flow on behalf of the
user. It redirects the user to the Authorization Server, retrieves the token, and attaches
it to API requests. This keeps tokens out of the browser and improving security.

In both cases, the backend services can use the token to drive authentication and
authorization.

We’ll configure both use cases in the upcoming chapters.

37.1 Token Verification

An API Gateway can verify incoming OAuth2/OIDC access tokens before forwarding the
HTTP request to the backend API.

Image: Membrane API Gateway verifying OAuth2 access tokens

The API Gateway Handbook

 252

The simplest way to implement this is by configuring your Authorization Server to issue
JWTs (JSON Web Tokens) as access tokens. In that case, the gateway’s job becomes similar
to what we described in chapter 36.3. Often, the configuration can be even more streamlined
thanks to OIDC Discovery support from the Authorization Server.

Membrane includes an example setup in examples/security/oauth2/azure-ad-
with-jwts, where the README walks through using Microsoft’s Entra ID as the
Authorization Server.

Here’s a snippet of how JWT token verification is configured:

<jwtAuth expectedAud="api://2axxxx16-xxxx-xxxx-faxxxxxxxxf0">
 <jwks jwksUris="https://login.microsoftonli
 ne.com/common/discovery/keys" />
</jwtAuth>

Traditionally, you’d need to manually configure a public key to verify token signatures. But
with OIDC Discovery, the Authorization Server’s public keys can be fetched automatically.
Microsoft, for example, publishes its keys at a fixed URL:

https://login.microsoftonline.com/common/discovery/keys

Note: This URL may vary depending on your Azure tenant setup.

The audience value api://2axxxx16-xxxx-xxxx-faxxxxxxxxf0 refers to what Microsoft calls
the Application ID of the App Registration. It’s created by the administrator when registering
the API in Azure.

Flow Overview

Step 1: Token Acquisition
The client obtains a token from Microsoft.

Step 2: API Request
The client sends an API request to the gateway, attaching the token in the HTTP header:

Authorization: Bearer ...token...

In this role, Membrane API Gateway only allows requests that:

• carry tokens signed by Microsoft
• carry tokens with the correct audience (aud) value.

Sidenote: Not just Entra ID—and not just JWKS
Membrane’s JWT verification works with any standards-compliant OAuth2/OIDC provider.
JWKS and Discovery are convenient, but optional. You can also configure public keys
manually if your provider doesn’t support Discovery or if you prefer tighter control. Whether
you’re using Entra ID, Auth0, Keycloak, or something custom, the same principles apply.

The API Gateway Handbook

 253

37.2 Authorization Code Flow

When operating in a web context, Membrane API Gateway can acquire an access token on
behalf of the user.

In this setup, Membrane identifies the user and his browser by a session cookie. While session
cookies aren’t part of the OAuth2 specification, they’re a practical and widely used
mechanism to track login state in web applications.

Flow Overview

Step 1: Token Acquisition
The user’s browser accesses the API Gateway without being logged in. The gateway detects
this and initiates an OAuth2 Authorization Code Flow. Once the flow completes successfully,
the user is considered “logged in,” and the session is associated with an access token.

Step 2: API Request
The browser sends an API request to the gateway, including the session cookie. The gateway
looks up the session, retrieves the corresponding access token, and attaches it to the request
before forwarding it to the backend.

This approach keeps access tokens out of the browser’s JavaScript context, which reduces the
risk of token leakage through XSS attacks. It also allows the gateway to enforce consistent
token handling across all requests.

Sidenote: Why use the Authorization Code Flow?
The Authorization Code Flow is designed for apps running in a browser. It separates the
user’s credentials from the app and allows secure token exchange on the server side. When
combined with Proof Key for Code Exchange (PKCE), it’s the most secure OAuth2 flow for
public clients like SPAs and mobile apps.

The API Gateway Handbook

 254

38 Legacy Integration SOAP Web Services
Software doesn’t come with an expiration date, but some systems definitely overstay their
welcome. Legacy protocols, especially XML-based formats like SOAP and Web Services, are
still widely used in enterprise environments. While modern APIs mostly speak JSON, the old
guard hasn’t left the building.

The challenge? Making the old and new work together.

The good news is that if the legacy system communicates over HTTP, it can be routed
through an API Gateway. This allows you to apply gateway features, routing, authentication,
logging, transformation, even if the backend still lives in 2006.

Legacy Support

Some API gateways, like Membrane, go beyond simple HTTP forwarding. They offer built-in
capabilities for:

• Handling SOAP requests and responses
• Performing XML-to-JSON and JSON-to-XML transformations
• Validating XML messages against XSD schemas and WSDL documents
• Routing based on SOAP action or WS-Addressing headers

Migration to APIs

These features allow you to expose a modern, JSON-friendly REST API on the outside while
continuing to use an XML-based interface on the inside. You get the best of both worlds: a
stable backend and a flexible, modern API facade.

💡 Sidenote: Modernizing Web Services
If you're modernizing step by step, an API Gateway can act as a protocol adapter, translating
requests between REST and SOAP without touching the legacy backend.

In short, an API Gateway can serve as a modernization bridge. Instead of ripping out your
legacy systems, you can wrap them with a modern API layer and evolve at your own pace.

38.1 Sample Web Services

For testing and development, it’s often helpful to have a simple Web Service available.
Membrane includes a plugin called sampleSoapService that provides a basic SOAP
emulator—perfect for quick testing scenarios.

The API Gateway Handbook

 255

By deploying the following API configuration:

<api port="2000">
 <path>/city-service</path>
 <sampleSoapService/>
</api>

you can access a WSDL document by visiting:

http://localhost:2000/city-service?wsdl

This WSDL allows you to use tools like SOAP UI to generate and send requests to the
service.

Image: Creating a project from a WSDL document in SOAP UI

You don’t need specialized tools to try out the service. You can also use curl, or the REST
client extension in Visual Studio Code. Here’s an example request using raw XML:

POST /city-service
Host: localhost:2000
Content-Type: text/xml

<s11:Envelope
xmlns:s11="http://schemas.xmlsoap.org/soap/envelope/">
 <s11:Body>
 <getCity xmlns="https://predic8.de/cities">
 <name>Bonn</name>
 </getCity>
 </s11:Body>
</s11:Envelope>

The API Gateway Handbook

 256

The sampleSoapService plugin responds with a SOAP envelope like this:

HTTP/1.1 200 Ok
Server: Membrane API Gateway
Content-Type: text/xml

<s:Envelope
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:cs="https://predic8.de/cities">
 <s:Body>
 <cs:getCityResponse>
 <country>Germany</country>
 <population>327000</population>
 </cs:getCityResponse>
 </s:Body>
</s:Envelope>

Even if your API gateway doesn’t offer built-in SOAP support, you can often emulate similar
behavior using templates, routing, and content transformation. That’s exactly what the next
section will cover.

38.2 Mocking a Web Service

You can simulate a Web Service by manually crafting a SOAP response. The example below
shows how Membrane can return a static SOAP body when a client sends a request to /mock-
service:

<api port="2000">
 <path>/mock-service</path>
 <response>
 <static pretty="true">
 <![CDATA[
 <s11:Envelope
xmlns:s11="http://schemas.xmlsoap.org/soap/envelope/">
 <s11:Body>
 <getCityResponse xmlns="https://predic8.de/cities">
 <country>England</country>
 <population>8980000</population>
 </getCityResponse>
 </s11:Body>
 </s11:Envelope>
]]>
 </static>
 </response>
 <return/>
</api>

The API Gateway Handbook

 257

When this API is called, it returns a SOAP message. This is useful for testing or
demonstration purposes, allowing you to simulate legacy services without having to set up a
full-fledged SOAP backend.

💡Sidenote: What is CDATA?
In XML configurations, <![CDATA[...]]> marks a CDATA section (Character Data),
which tells the XML parser to treat the enclosed content as plain text—even if it contains
characters like <, >, or & that would normally be interpreted as XML.

Example:

<![CDATA[
 <country>England</country>
]]>

Without CDATA, the parser would try to interpret <country> as an actual XML tag. Using
CDATA lets you safely embed raw XML or HTML fragments inside configuration files.

38.2.1 soapBody Template

When working with Web Services, Membrane provides a helpful <soapBody> element that
makes crafting SOAP responses easier and cleaner. It automatically generates the necessary
SOAP envelope and body tags around your payload.

The example from the previous section can be simplified like this:

<api port="2000">
 <path>/mock-service</path>
 <response>
 <soapBody pretty="true">
 <![CDATA[
 <getCityResponse xmlns="https://predic8.de/cities">
 <country>England</country>
 <population>8980000</population>
 </getCityResponse>
]]>
 </soapBody>
 </response>
 <return/>
</api>

By using <soapBody>, you only provide the payload, the gateway handles the rest. It wraps
your content in a proper SOAP envelope with the required namespaces, so you can focus on
what matters: the actual response data.

The API Gateway Handbook

 258

38.3 Exposing SOAP Web Services as REST APIs

Old and clunky SOAP-based Web Services can get a second life by exposing them as modern
REST-style JSON APIs. One effective strategy for doing this is using request and response
templates at the gateway.

This approach allows to:

• Accept RESTful calls with JSON payloads from clients
• Transform the requests into SOAP messages internally
• Forward them to a legacy backend
• Convert the SOAP responses back into clean JSON before returning them to the client

All this happens without changing the backend service.

This technique is especially helpful when you're modernizing incrementally or working with a
backend managed by a third party.

The API Gateway Handbook

 259

Template based

Here’s an example of how Membrane API Gateway can expose a SOAP web service as a
RESTful endpoint using templates:

<api port="2000" method="GET">
 <path>/cities/{city}</path>
 <request>
 <soapBody>
 <![CDATA[
 <getCity xmlns="https://predic8.de/cities">
 <name>${pathParam['city']}</name>
 </getCity>
]]>
 </soapBody>
 <setHeader name="SOAPAction"
 value=" https://predic8.de/cities/get"/>
 </request>
 <response>
 <template contentType="application/json">
 {
 "country": "${property.country}",
 "population": "${property.population}"
 }
 </template>
 <setProperty name="country"
 value="${//country}"
 language="xpath"/>
 <setProperty name="population"
 value="${//population}"
 language="xpath"/>
 </response>
 <target method="POST"
 url="https://www.predic8.de/city-service"/>
</api>

The image shows the details of the request and response transformations:

The API Gateway Handbook

 260

Image: Mapping a SOAP Operation to a RESTful GET Resource

This configuration:

• Accepts a REST-style GET request at /cities/{city}
• Inserts the city path parameter into a SOAP request
• Sets the SOAPAction header
• Sends the SOAP message to the Web Service
• Extracts values such as country and population using XPath
• Returns a clean JSON response to the client

Some SOAP implementations rely on the SOAPAction HTTP header to route the request to
the correct operation.

SOAPHeader: https://predic8.de/cities

The API Gateway Handbook

 261

Don’t forget to include the correct SOAPAction in your request. You’ll typically find the
required value in the WSDL binding section. For example:

<wsdl:binding name="CitySoapBinding" type="cs:CityPort">
 <s:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"></s:binding>
 <wsdl:operation name="getCity">
 <s:operation soapAction="https://predic8.de/cities"/>
 <wsdl:input>
 <s:body use="literal"
namespace="https://predic8.de/cities"></s:body>
 </wsdl:input>
 <wsdl:output>
 <s:body use="literal"
namespace="https://predic8.de/cities"></s:body>
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>

Use one API definition per WSDL operation. This keeps each configuration concise and
easier to test, maintain, and extend.

Image: Mapping a SOAP Operation to a RESTful POST Resource

The API Gateway Handbook

 262

38.4 Proxying SOAP

Membrane offers a convenient shortcut for deploying Web Services: the soapProxy plugin.
When routing SOAP traffic, you can use soapProxy instead of api in the proxies.xml
configuration.

soapProxy

The soapProxy simplifies routing and adds SOAP-specific capabilities out of the box:

• WSDL publishing and rewriting
• Request and response validation based on the WSDL
• A Web Services explorer

It’s especially useful when you want to expose or proxy legacy SOAP services with minimal
configuration effort.

soapProxy is just a convenient abbreviation that is internally translated to a
serviceProxy that is configured for Web Services.

This example sets up a SOAP proxy using a WSDL hosted on a remote server:

<soapProxy port="2000"
 wsdl="https://www.predic8.de/city-service?wsdl">
</soapProxy>

The soapProxy is completly configured from the information in the WSDL description. That's
the nice thing about service description, also about OpenAPI , when there is a description it
can make live much easier.

Once started, the WSDL is available locally at:

http://localhost:2000/city-service?wsdl

The API Gateway Handbook

 263

WSDL Rewriting

The WSDL is not just served from the gateway, it’s rewritten on the fly. Specifically, the
<s:address> element inside the WSDL is updated to reflect the gateway’s address:

<wsdl:service name="CityService">
 <wsdl:port name="CityPort" binding="cs:CitySoapBinding">
 <s:address location="http://localhost:2000/city-service">
 </s:address>
 </wsdl:port>
</wsdl:service>

By default, Membrane uses the protocol, host, and port from the client’s request to rewrite
the address dynamically. If the gateway is running behind a firewall, reverse proxy, or within
a containerized environment, you can configure a fixed external address using wsdlRewriter:

<soapProxy port="2000"
 wsdl="https://www.predic8.de/city-service?wsdl">
 <wsdlRewriter port="443"
 protocol="https"
 host="api.predic8.de" />
</soapProxy>

This ensures that clients importing the WSDL (e.g., into SOAP UI) are directed to the correct
public-facing address of the gateway.

Web Service Explorer

For convenience, Membrane also includes a simple Web Service Explorer. You can access it
by sending a GET request to the base service URL:

http://localhost:2000/city-service

The explorer provides a simple Web interface with key information about the service.

The API Gateway Handbook

 264

Image: Web Services Explorer

WSDL Validation

The soapProxy supports WSDL-based validation. When enabled with the validation
element, incoming requests and outgoing responses are checked against the WSDL’s schema
definitions and operation structure:

<soapProxy port="2000"
 wsdl="https://www.predic8.de/city-service?wsdl">
 <validation/>
</soapProxy>

If a request doesn’t match the expected format, the gateway will return a SOAP fault with
detailed error information.

An invalid SOAP request like this one:

<s11:Envelope ..>
 <s11:Body>
 <cit:getCity>
 <foo/>
 </cit:getCity>
 </s11:Body>
</s11:Envelope>

The API Gateway Handbook

 265

will result in a validation error.

HTTP/1.1 400 Bad request
Content-Type: text/xml;charset=UTF-8
X-Validation-Error-Source: REQUEST

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <Fault>
 <faultcode>Client</faultcode>
 <faultstring>WSDL message validation
failed</faultstring>
 <detail>
 <validation>
 <item>
 <message>cvc-complex-type.2.4.a: Invalid content
was found starting with element 'foo'. One of '{name}' is
expected.</message>
 <line>5</line>
 <column>16</column>
 </item>
 </validation>
 </detail>
 </Fault>
 </soap:Body>
</soap:Envelope>

This gives you early feedback on incorrect client requests and helps to ensure reliable
contract-based communication with the backend.

The API Gateway Handbook

 266

39 Operation
Running an API Gateway isn't just about deploying it once and forgetting about it. It’s about
operating it effectively, keeping it observable, secure, and maintainable. Whether you're
routing a few calls or managing a high-traffic API landscape, daily operations matter. From
admin consoles and monitoring tools to access logs and message tracing, this chapter covers
the operational features that help you stay in control once your gateway is up and running.

Membrane provides several built-in tools to help you administer, monitor, debug, and observe
traffic in real time or retrospectively. These features are not only useful during development
and testing but are essential in production environments where insight, visibility, and
reliability are key.

39.1 Admin Console

While not strictly necessary for running a gateway, a web-based admin console can make a
big difference in day-to-day operations. It gives you a cockpit view of your gateway: you can
inspect API configurations, monitor usage, and review the most recent traffic in real time, all
from your browser.

Membrane includes its own web console to support exactly that.

Activating the Console

Enabling the console is as simple as configuring an API with the console plugin. In fact, the
console itself is implemented as a plugin:

<api port="9000">
 <adminConsole/>
</api>

Once this configuration is active, point your browser to http://localhost:9000. You’ll be
greeted with an overview of all deployed APIs and a live feed of recent requests and
responses, perfect for debugging or keeping an eye on traffic.

The API Gateway Handbook

 267

Image: List of APIs in the Admin Console

The Calls tab provides key information about the most recent traffic. Activate Auto Reload
to watch messages pass through the gateway in real time. Membrane keeps the last few
messages in memory for inspection, you can configure how much memory should be
allocated for this purpose (See section about MessageExchangeStores) below.

Clicking a timestamp reveals the full details of the request and response, including HTTP
headers and message body.

Image: Requests and responses that passed recently the gateway.

The API Gateway Handbook

 268

Securing the Console

Since the console behaves like any other API, you can secure it in the same way. Use Basic
Authentication, API keys, or JWTs, whichever fits your setup.

The example below demonstrates how to protect the console with Basic Authentication and
mark it as read-only, to prevent unauthorized changes:

<api port="9000">
 <path>/admin</path>
 <basicAuthentication>
 <staticUserDataProvider>
 <user username="mike" password="2472u1984"/>
 </staticUserDataProvider>
 </basicAuthentication>
 <adminConsole readOnly="true"/>
</api>

For additional options on securing the console or avoiding plaintext passwords in your config,
check the security section of this book.

Security Tip: Secure Console Access
Always secure your admin interfaces. Leaving them unprotected is like leaving your front
door wide open, you might not like who walks in.

39.2 Monitoring with Prometheus

To monitor general traffic statistics, you can use Membrane’s plugin for Prometheus. The
following questions

• How many HTTP requests were received per API?
• How often was which HTTP Status Code returned?
• How long did processing take?

(Membrane internal processing as well as processing by the backend)

For more details, check out the sample configurations in the examples/monitoring-
tracing/prometheus directory. While Prometheus handles and stores the raw data,
monitoring is often performed by Grafana.

<api port="2000" name="prom-metrics">
 <path>/metrics</path>
 <prometheus />
</api>

The API Gateway Handbook

 269

Execute the following command:

curl localhost:2000/metrics

You get the answer:

TYPE membrane_count counter
membrane_count{rule="prom_metrics",code="200"} 2
TYPE membrane_good_count counter
membrane_good_count{rule="prom_metrics",code="200"} 0
TYPE membrane_good_time counter
membrane_good_time{rule="prom_metrics",code="200"} 0
TYPE membrane_good_bytes_req_body counter
membrane_good_bytes_req_body{rule="prom_metrics",code="200"} 0
TYPE membrane_good_bytes_res_body counter
membrane_good_bytes_res_body{rule="prom_metrics",code="200"} 0
TYPE membrane_rule_active gauge
membrane_rule_active{rule="prom_metrics"} 1
TYPE membrane_duplicate_rule_name gauge
membrane_duplicate_rule_name 0

The API Gateway Handbook

 270

Image: An Administrator in the process of configuring Membrane metrics in Grafana

39.3 Access Log

If you’re serving up an API, you want to know who’s knocking on your door, and when. Just
like web servers have been doing for ages, every request is recorded with details like the
timestamp, the client’s IP, and the requested path. For REST APIs, it’s essentially an audit log
that lets you track every "GET" or "POST" like a detective following clues.

The API Gateway Handbook

 271

The Common Log Format

The Common Log Format is the gold standard for access logs, used by a whole slew of web
servers, proxies, and firewalls. Each request gets its own line with these fields:

• host: The IP address of the client
• ident: Typically not used, but historically for client identity
• authuser: The authenticated user, if any
• date: The timestamp of the request
• request: The HTTP method and resource path
• status: The HTTP status code
• bytes: The size of the response

A typical access log entries might look like these:

192.168.2.81 [11/03/2025:20:25:13 +0100] "GET /shop/v2/orders/
HTTP/1.1" 200 0
192.168.2.81 [11/03/2025:20:25:21 +0100] "GET
/shop/v2/orders/4 HTTP/1.1" 200 0
127.0.0.1 [11/03/2025:20:25:24 +0100] "GET /shop/v2/products/
HTTP/1.1" 200 0

Membrane’s Access Log

Membrane offers flexible access logging built on the log4j Java logging framework. This
means you can tailor your log lines to include virtually any piece of data you need—whether
it’s specific HTTP headers or even fields from a JSON payload.

Resources

Common Log Format, Wikipedia
https://en.wikipedia.org/wiki/Common_Log_Format

Access Log Example
examples/logging/access

The API Gateway Handbook

 272

39.4 API Tracing

As API communication paths get more complex with an ever-growing number of applications
and microservices, it's crucial to know who’s calling whom. Often, you won't find up-to-date
diagrams to help you trace these calls—it can be like trying to follow breadcrumbs in a
labyrinth. Thankfully, modern technologies let you trace how a single API call can trigger an
entire call chain that branches out like a sprawling tree.

Sidenote: Think of API tracing as the ultimate game of "telephone" where every whisper is
logged so you can see exactly how the message transformed from one service to the next.

39.4.1 OpenTelemetry

When call graphs span multiple applications and APIs it becomes essential that every system
involved speaks the same language. Enter OpenTelemetry: a popular open standard that
ensures every participating system uses the same protocol to report incoming requests to a
central collector. Whether you're using Java, .NET, Python, or another popular platform, there
are agents available to instrument your applications and send the necessary communication
data to the collector. And yes, Membrane has its very own OpenTelemetry plugin.

Imagine a trace that starts at an API Gateway and extends through three downstream APIs.
That's the power of distributed tracing, giving you a complete picture of your call chain.

Image: Callgraph from API Gateway over 3 Microservices

The API Gateway Handbook

 273

OpenTelemetry in Membrane

Getting Membrane to send traces to a collector like Jaeger is simple. Just enable the
OpenTelemetry plugin, either for a specific API or globally for all deployed APIs. Here’s an
example configuration:

<api port="2000">
 <openTelemetry sampleRate="1.0">
 <otlpExporter host="localhost"
 port="4317"
 transport="grpc"/>
 </openTelemetry>
 <target url="http://localhost:2001" />
</api>

In this setup, Membrane will automatically send tracing data to a collector. For a more
detailed example, check out the contents of the examples/monitoring-
tracing/opentelemetry folder.

💡Quick Tip:
Distributed tracing can be a lifesaver when troubleshooting performance issues.

Resources

OpenTelemetry @ Cloud Native
https://opentelemetry.io/

Jaeger: open source, distributed tracing platform
https://www.jaegertracing.io/

OpenTelemetry Example
examples/monitoring-tracing/opentelemetry

The API Gateway Handbook

 274

39.5 Logging and Saving whole Messages

Whether you're debugging, or running APIs in production, it's often helpful to inspect the
actual messages flowing through the gateway. Membrane provides multiple ways to log or
persist these messages.

Writing Messages to the Log

The most straightforward approach is to log message bodies directly to a file. Simply add the
<log/> element to an API configuration:

<api port="2000">
 <log/>
 ...
</api>

To log messages across all APIs, place the logger in the global chain:

<global>
 <log/>
</global>

Logging only what matters

Instead of logging full payloads, you can extract and log just the relevant parts using
expressions. This keeps logs focused and easier to read:

<log message="Got: ${body}/>
<log message="Header: ${header}"/>
<log message="Trace: ${header['Trace-Id']}/>

To extract fields from structured content:

<log message="Id: ${$.id} Date: ${$.date}"
 language="jsonpath"/>
<log message="Id: ${/contract/id} Date: ${/contract/date}"
 language="xpath"/>

These filtered logs are well-suited for aggregation and visualization in tools like Elasticsearch
or Grafana.

The API Gateway Handbook

 275

39.5.1 Saving Messages to Stores

For longer-term storage or more advanced inspection, Membrane supports ExchangeStores.
These can persist full request and response messages in different backends.

In-Memory Store

Membrane comes with a lightweight in-memory message store. It's great for development or
real-time debugging in production. You can configure memory limits like so:

<limitedMemoryExchangeStore id="store" maxSize="100000000"/>

<router exchangeStore="store">

Messages are held in memory and can be inspected via the Admin Console’s Calls tab. The
capacity defines the maximum amount of memory in bytes used for storing exchanges.

File-Based Message Store

To persist messages across restarts, you can use the fileExchangeStore. Each message
exchange is written as an XML file on disk:

<fileExchangeStore id="fs"
 dir="./exchanges"
 maxDays="30" />

<router exchangeStore="fs" >

Each exchange will be written to a separate file in the specified directory. This is helpful
when reproducing bugs or when needing an audit trail for compliance.

MongoDB Message Store

If your team prefers centralized and queryable message storage, Membrane also supports
MongoDB as a backend:

<mongoDBExchangeStore id="store"
 connection="mongodb://localhost:27017/"
 database="membrane"
 collection="exchanges"/>

<router exchangeStore="store">

This configuration is a good fit when integrating message inspection into dashboards or
querying logs programmatically.

The API Gateway Handbook

 276

Resources

File ExchangeStore Example
examples/extending-membrane/file-exchangestore

MongoDB ExchangeStore Example
examples/extending-membrane/mongodb-exchange-store

The API Gateway Handbook

 277

40 Gateway Performance
Membrane API Gateway is designed with performance in mind. Its architecture includes
several built-in optimizations that help keep latency low and throughput high—even under
load.

40.1 Streaming

Membrane streams data as early and as far as possible. That means it can start forwarding
requests and responses before the full message has even arrived. No need to wait for the last
byte, Membrane gets moving as soon as enough data from the HTTP header shows up.

This streaming behavior minimizes buffering and avoids holding large payloads in memory,
which makes Membrane blazingly fast and memory-efficient.

However: features like message transformations, and content filtering often require the full
body to be loaded and parsed. These features may introduce delays or increase memory usage.
So, if performance matters, keep an eye on which filters or plugins you enable.

40.2 Keep-Alive

Membrane uses persistent TCP connections, also known as HTTP keep-alive, to reduce the
overhead of connection setup. It maintains a pool of open TCP connections to backend
services and reuses them whenever possible.

This avoids the time-consuming process of setting up a new connection for every single
request. Especially in high-latency networks, reusing connections can save precious
milliseconds.

⚠ Heads-up:
Some filters and features may disable connection reuse, depending on how they handle
message bodies or headers. If connection reuse is important in your environment, make sure
your configuration doesn’t accidentally turn it off.

Interestingly, some users have seen better performance with Membrane than without it. In
setups where HTTP clients didn’t support connection pooling properly, Membrane stepped in,
kept connections alive, and acted as a smarter proxy. In these cases, the gateway didn’t just
avoid slowing things down. It actually sped things up.

Sidenote:
To get a feel for the actual performance of your setup, it’s best to measure. Run a few load
tests, try toggling certain features, and see how throughput and latency are affected. You
might be surprised how much difference one plugin can make.

The API Gateway Handbook

 278

Thanks For Reading

Thanks for spending time with the API Gateway Handbook. We hope it gave you useful
insight, practical patterns, and a clearer picture of how gateways help operating APIs.

This book is a living project and will continue to evolve. For updates and errata, visit:

https://www.membrane-api.io/api-gateway-ebook.html

We’d also love to hear from you. If you have feedback, ideas, or unanswered questions about
API Gateways, feel free to reach out.

Cheers,
Thomas Bayer & Tobias Polley

bayer@predic8.de
polley@predic8.de

